
POSTGIS

Stefan Keller

Swiss PGDay 2016, 24. Juni 2016, HSR Rapperswil

Überblick, Tips und Tricks

Topics

 What is PostGIS?

 Spatial table

 Example with historical data

 OGC queries in PostGIS

 Spatial Joins

 OGC

 Layers / Layerss

 Indexing

About Spatial Databases…

 Databases

 Types: string, float, date

 Indexes: b-tree

 Functions: strlen(string), pow(float, float), now()

 Spatial Databases

 Spatial Types: geometry, geography

 Spatial Indexes: r-tree, quad-tree, kd-tree

 Spatial Functions: ST_Length(geometry), ST_X(geometry), etc.

3

Spatial Databases and GIS

Web
Client

Internet

Other

GIS

LAN

Editing

Loading

Analysis

GIS

Mapping

Features
Database

Image from Paul Ramsey Refractions Research

ABOUT POSTGIS

5

PostGIS – A PostgreSQL extension

 Delivered with PostgreSQL installation

 More rigid license: PostgreSQL => MIT alike, PostGIS => GPL

 Compliant with standards (like PostgreSQL)

 Supports PostgeSQL‟s „native types‟: point, line, box(!), path,

polygon, and circle geometric types

 Supports OGC types (“OGS Simple Features for SQL”): point,

linestring, polygon, multipoint, etc.

 >300 functions

 Spatial index: GiST (Generalized Search Tree), SP-GiST, KNN

PostGIS S/W components

 Bulk loader (mostly command line interfaces CLI):

 Vector data: shp2pgsql (CLI and plugin for pgAdmin III)

 Raster data: raster2pgsql (CLI)

 TIPP: gdal / ogr (CLI) from gdal.org

 TIPP: geoconverter.hsr.ch (free Webapp)

 Database Drivers

 Open Database Connectivity ODBC connectivity.

 Java Database Connectivity (JDBC)

S/W internally used by PostGIS (and other FOSS)

 PROJ.4: Open source library that provides coordinate

reprojection to convert between geographic coordinate

systems

 GEOS (Geometry Engine, Open Source): Open source library

to perform operations on geometry OGC types

 CGAL/SFCGAL (Geometry Engine, Open Source): Alternative

to GEOS

Swiss PGDay, 24. Juni 2016, Keller: PostGIS

8

PostGIS History

Swiss PGDay, 24. Juni 2016, Keller: PostGIS

9

Ramsey, PostGIS Frenzy, 2015

PostGIS and standards

1. PostGIS implements and is compliant with

the “OGC‟s Simple Features for SQL”

standard

2. PostGIS supports all OGC types: Point,

Line, Polygon, MultiPoint, MultiLine,

MultiPolygon, GeometryCollection and

operations on those types

3. PostGIS uses OGC Well-Known Text (WKT)

format for I/O and constructors

Well Known Text (WKT)

 Geometry types from OGC standard for Simple Features:

 “POINT(50 100)”

 “LINESTRING (10 10, 20 20)”

 “POLYGON ((0 0, 5 5, 5 0, 0 0))”

 “MULTIPOINT ((1 1), (0 0))”

 “MULTILINESTRING ((...), (...))”

 “MULTIPOLYGON ((...), (...))”

 Supports also Curves!

PostgreSQL/PostGIS

 The data is stored in a relatively simple format with geometry

stored binary. It can be viewed as WKT using AsTextgeom),

SELECT name, city, hrs, status, AsText(geom)

from mytable;

name city hrs status st_fed geom

Brio Refining Friendswood 50.38 active Fed

SRID=32140;POINT(968024.87474318

4198600.9516049)

Crystal Chemical Houston 60.9 active Fed

SRID=32140;POINT(932279.183664999

4213955.37498466)

North Cavalcade Houston 37.08 active Fed

SRID=32140;POINT(952855.717021537

4223859.84524946)

Dixie Oil Processors Friendswood 34.21 active Fed

SRID=32140;POINT(967568.655313907

4198112.19404211)

Federated Metals Houston 21.28 active State

SRID=32140;POINT(961131.619598681

4220206.32109146)

Spatial

reference

number
Data type

Coordinates
Attribute Data

How does it work?

Spatial data is stored using the coordinate
system of a particular projection

That projection is referenced with a Spatial
Reference Identification Number (SRID)

This number (e.g. 21781, meaning
EPSG:21781) relates to another table
(spatial_ref_sys) which holds all of the
spatial reference systems available

This allows the database to know what
projection each table is in, and if need be,
re-project from those tables for calculations
or joining with other tables

TABLES WITH GEOMETRIES AND

SYSTEM TABLES

14

Creating a spatial table: Basic steps

 Creating a table with at least an attribute of type geometry

 CREATE TABLE my_pois (
 gid serial PRIMARY KEY,
 geom GEOMETRY(POINT, 21781,2),
 name TEXT
);

 Beware old style

 CREATE TABLE my_pois (
 gid serial PRIMARY KEY,
 name TEXT
);

 SELECT AddGeometryColumn('public',„my_pois',‟geom',„21781','POINT',2);

 TIPP:

 We recommend “geom” or “geometry” as attribute name (sometimes see
also “the_geom”)

Creating a spatial table, step 1

 Note a system generated identified (gid) is used as the

primary key

 PostgreSQL/PostGIS will respond:

 NOTICE: CREATE TABLE will create implicit sequence

"my_pois_gid_seq" for serial column "my_pois.gid"

 NOTICE: CREATE TABLE / PRIMARY KEY will create implicit

index “my_pois_pkey" for table “my_pois"

Creating a spatial table, step 1

Examine the table (\d):

 Table "public.my_pois"

 Column | Type | Modifiers

--------+---------+-----------------------

 gid | integer | not null default

 nextval('my_pois_gid_seq'::regclass)

Reset of data

Indexes:

"my_pois_pkey"PRIMARY KEY,btree (gid)

Creating a spatial table, step 2

Step 2 are PostGIS internal steps…

As column “geom” of type GEOMETRY was added,
PostGIS will automatically generate integrity
constraints

 This accessed the geometry_columns system
table (details later).

Creating a spatial table, step 2

First system generated constraint

ALTER TABLE my_pois

 ADD CONSTRAINT enforce_dims_geom CHECK

(ndims(geom) = 2);

Creating a spatial table, step 2

Second system generated constraint

ALTER TABLE my_pois

 ADD CONSTRAINT enforce_geotype_geom

CHECK (geometrytype(geom) =

‘POINT'::text OR geom IS NULL);

Creating a spatial table, step 2

Third system generated constraint

ALTER TABLE my_pois

 ADD CONSTRAINT enforce_srid_geom CHECK

(srid(geom) = 21781);

Creating a spatial table, step 2

The Primary Constraint was created in step1

CONSTRAINT my_pois_pkey PRIMARY KEY(gid);

Creating a spatial table, step 3

 Given table openstreetmap_points, insert all Zoo‟s into table

my_pois:

INSERT INTO my_pois (geom, name)

 SELECT way, name

 FROM openstreetmap_points

 WHERE tags @> hstore('tourism', 'zoo');

TIPP: Creation of geometry constructors

 ST_GeomFromText('POINT(-71.06 42.28)') -- Preferred

simplest text form without SRID

 ST_GeomFromText('POINT(-71.06 42.28)', 4326) -- Preferred

for text form with SRID

 ST_MakePoint(-71.06, 42.28, 4326) -- Preferred

symbolic form (Hint: returns WKT, not EWKT)

 ST_SetSRID(ST_MakePoint(-71.06, 42.28),4326) -- Preferred

symbolic form with EWKT

Swiss PGDay, 24. Juni 2016, Keller: PostGIS

24

Additional TIPP: Create Polygon given Bounding Box (BBox)

 ST_Transform(ST_MakeEnvelope(8.795611, 46.872886,

9.674135, 47.675419, 4326), 3857)

 ST_Transform(ST_SetSRID(ST_Envelope('LINESTRING(8.795

611 46.872886, 9.674135 47.675419)'::geometry),4326), 3857)

 ST_Transform(ST_SetSRID('BOX(8.795611 46.872886,

9.674135 47.675419)'::box2d, 4326), 3857)

 ST_Transform(ST_SetSRID('BOX3D(8.795611 46.872886,

9.674135 47.675419)'::box3d, 4326), 3857)

 See also PostGIS Terminal : http://giswiki.hsr.ch/PostGIS_-

_Tipps_und_Tricks#PostGIS-Daten_laden

Swiss PGDay, 24. Juni 2016, Keller: PostGIS

25

http://giswiki.hsr.ch/PostGIS_-_Tipps_und_Tricks
http://giswiki.hsr.ch/PostGIS_-_Tipps_und_Tricks
http://giswiki.hsr.ch/PostGIS_-_Tipps_und_Tricks
http://giswiki.hsr.ch/PostGIS_-_Tipps_und_Tricks
http://giswiki.hsr.ch/PostGIS_-_Tipps_und_Tricks

POSTGIS SYSTEM TABLES

Swiss PGDay, 24. Juni 2016, Keller:

PostGIS

26

PostGIS System Tables (OGC – Metadata tables)

 FOSS Relational Database and GeoDatabase Part III Marco Ciolli, Fabio Zottele :

geometry_columns table/view

Column | Type |Modifiers

-----------------------------+--------------------------------+----------

 f_table_catalog | character varying(256) | not null

 f_table_schema | character varying(256) | not null

 f_table_name | character varying(256) | not null

 f_geometry_column | character varying(256) | not null

 coord_dimension | integer | not null

 srid | integer | not null

 type | character varying(30) | not null

Indexes:

 "geometry_columns_pk" PRIMARY KEY, btree (f_table_catalog, f_table_schema,
f

_table_name, f_geometry_column)

This table/view allows PostgreSQL/PostGIS to keep track of actual
user spatial tables.

spatial_ref_sys table

 Displaying a spherical earth on a flat surface requires a

projection.

 This table uses a standard numbering, called the EPSG, to

describe various projections.

 Examine the details for a particular projection e.g. in psql:

select * from spatial_ref_sys where srid=21781;

 TIPP: See also http://epsg.io/

http://epsg.io/

spatial_ref_sys table

\d spatial_ref_sys

 Column | Type | Modifiers

-----------+--------------------------+-----------

 srid | integer | not null

 auth_name | character varying(256) |

 auth_srid | integer |

 srtext | character varying(2048) |

 proj4text | character varying(2048) |

Indexes:

 "spatial_ref_sys_pkey" PRIMARY KEY, btree (srid)

SPATIAL DATA TYPES AND OGC

Geometry Object Model

 is “abstract” (or conceptual) part of the OGC suite of

standards

 It defines geometries and operations on them.

 is conceptual model independent of SQL or any other

language

 Abstract class: Geometry

 Instantiable subclasses in include:

 Points which represent points in 2-dimensional space

 Lines are linear edges between two points

 Linestrings are connected lines (end-point is start-point of next line)

 Linear Rings are ‟closed‟ Linestrings (last ‟end-point‟ is first ‟start-point‟)

 Polygons Surface within a Linear Ring, potentially excluding inner Linear Rings

 Uniform Collections of concrete Types

Spatial Types – OGC Simple Features for SQL

 An association represents a family of links.

 Aggregation is a has-a relationship; aggregation is
more specific than association.

 Composition is a stronger variant of the "has a"
association relationship, it has a strong lifecycle
dependency between instances of the container class
and instances of the contained class(es).

 The standard does not mention UML composition, but
explicitly mentions the “owned by” black dot.
Multiplicity in UML allows to specify cardinality - i.e.
number of elements - of some collection of elements. In
the standards will ill take the open diamond to
represent the part-of relation.

 Inheritance represents an is-a relation.

Spatial Types – OGC Simple Features for SQL

OGC Simple Feature Types: Operators

OGC Simple Feature Types: Methods and Structures

OGC Simple Features for SQL

 The OGC SF (similar to ISO 19125-1) describes 2-D

geometry with linear interpolation between vertices.

 The simple feature model consists of a root class
Geometry and its specific subclasses Point, Curve,

Surface, GeometryCollection.

 The class Geometry collection has the subclasses

Multipoint, Multicurve, MultiSurface.

OGC Simple Features for SQL (*)

 Basic Methods on Geometry

 Describes the dimensions and reference system (SRID) of the geometry.

 Operations include Dimension, GeometryType, , conversions AsText, AsBinary, tests on geometry
include IsEmpty, IsSimple. Operations that return geometry Boundary, Envelope returns bounding
box

 Methods for testing Spatial Relations between geometric objects

 These polymorphic methods check relations on the generic or super class GEOMETRY and
usually return a Boolean. Main methods Equals, Disjoint, Intersects, Touches, Crosses, Within,
Contains, Overlaps, Relate(testing for intersections between the Interior, Boundary and Exterior of
the two geometries)

 Methods that support Spatial Analysis

 A set of geometric and „metric‟ methods. Methods calculate distances and areas with respect to
the spatial reference system of this Geometry. Methods include Distance, Buffer, ConvexHull,
Intersection, Union, Difference, SymDifference.

 Geometry Collection

 A GeometryCollection is a geometry that is a collection of 1 or more geometries. All the elements
in a GeometryCollection must be in the same Spatial Reference. Subclasses of
GeometryCollection may restrict membership based on dimension and may also place other
constraints on the degree of spatial overlap between elements. Methods

 NumGeometries():Integer—Returns the number of geometries in this GeometryCollection.

 GeometryN(N:integer):Geometry—Returns the Nth

OGC Spatial Relations

Equals – same geometries

Disjoint – geometries share common point

 Intersects – geometries intersect

 Touches – geometries intersect at common
boundary

Crosses – geometries overlap

Within– geometry within

Contains – geometry completely contains

Overlaps – geometries of same dimension overlap

Relate – intersection between interior, boundary or
exterior

OGC Spatial Operations & Relations

 The most typical spatial
relationships (and it's
opposites) got own
functions, like:

 ST_Within != ST_Contains (*)

 ST_Covers != ST_CoveredBy

 ST_Intersects != ST_Disjoint

 (*) Note: Prefer ST_Covers
over ST_Contains if lines on
boundaries count as
„inside“ (Source: Martin
Davis: http://lin-ear-th-
inking.blogspot.ch/2007/06/s
ubtleties-of-ogc-covers-
spatial.html)

http://lin-ear-th-inking.blogspot.ch/2007/06/subtleties-of-ogc-covers-spatial.html
http://lin-ear-th-inking.blogspot.ch/2007/06/subtleties-of-ogc-covers-spatial.html
http://lin-ear-th-inking.blogspot.ch/2007/06/subtleties-of-ogc-covers-spatial.html
http://lin-ear-th-inking.blogspot.ch/2007/06/subtleties-of-ogc-covers-spatial.html
http://lin-ear-th-inking.blogspot.ch/2007/06/subtleties-of-ogc-covers-spatial.html
http://lin-ear-th-inking.blogspot.ch/2007/06/subtleties-of-ogc-covers-spatial.html
http://lin-ear-th-inking.blogspot.ch/2007/06/subtleties-of-ogc-covers-spatial.html
http://lin-ear-th-inking.blogspot.ch/2007/06/subtleties-of-ogc-covers-spatial.html
http://lin-ear-th-inking.blogspot.ch/2007/06/subtleties-of-ogc-covers-spatial.html
http://lin-ear-th-inking.blogspot.ch/2007/06/subtleties-of-ogc-covers-spatial.html
http://lin-ear-th-inking.blogspot.ch/2007/06/subtleties-of-ogc-covers-spatial.html
http://lin-ear-th-inking.blogspot.ch/2007/06/subtleties-of-ogc-covers-spatial.html
http://lin-ear-th-inking.blogspot.ch/2007/06/subtleties-of-ogc-covers-spatial.html
http://lin-ear-th-inking.blogspot.ch/2007/06/subtleties-of-ogc-covers-spatial.html
http://lin-ear-th-inking.blogspot.ch/2007/06/subtleties-of-ogc-covers-spatial.html
http://lin-ear-th-inking.blogspot.ch/2007/06/subtleties-of-ogc-covers-spatial.html

Spatial Methods

Distance – shortest distance

Buffer – geometric buffer

ConvexHull – smallest convex polygon geometry

 Intersection – points common to two geometries

Union – all points in geometries

Difference – points different between two
geometries

SymDifference – points in either, but not both of
input geometries

TIPP: Overlay (1 von 2)

 Gegeben die beiden Tabellen:

 gemeinden_bl: Gemeinden Kt.BL aus Vermessung mit den

Attributen gem_id_bfs, name, geom(MultiPolygon,21781)

 gemeinden_bl_simpl - Gemeinden Kt.BL aus Raumplanung,

von Vermessung digitalisiert und mit zusätzlichen Polygonen

 Gesucht: Polygon-Verschnitt (Overlay, Intersection)

 Vorbereitungen:

 DB mit PostGIS Extension

 CREATE SEQUENCE my_sequence MINVALUE 0;

 SELECT setval('my_sequence', 0); -- Reset sequence:

42

TIPP: Overlay – the robust way (2 von 2)

43

CREATE TABLE gemeinden_bl_intersected_multi AS

SELECT

 nextval('my_sequence') AS id,

 a.id AS aid,

 b.id AS bid,

 a.name AS name,

 a.gem_id_bfs AS gem_id_bfs,

 round(ST_Area(ST_Intersection(a.geom,b.geom)))::int

 AS area,

 ST_Intersection(a.geom, b.geom) AS geom

FROM gemeinden_bl AS a

INNER JOIN gemeinden_bl_simpl AS b

ON ST_Intersects(a.geom, b.geom)

WHERE NOT ST_IsEmpty(ST_Buffer(ST_Intersection(a.geom,

b.geom), 0.0))

AND ST_Area(ST_Intersection(a.geom,b.geom))>=50000.0;

-- m2, 5 Hektaren, 223m*223m

POSTGIS FEATURE FRENZY

BY PAUL RAMSEY

Slides 64 – 109 (Presented at conference FOSS4G NA 2015)

THE END

46

Not Covered

 Topology

 Routing

 Geometry => very slow

 PostGIS Extension Topology =>

slow

 pgRouting

 Raster Image Data

Stefan Keller

Geometa Lab at HSR www.hsr.ch/geometalab

Twitter: @geometalab and @sfkeller

DISCUSSION!

