
Lightning Talks
Vik Fearing

& Possibly You?

Boldly Migrate to PostgreSQL
with credativ-pg-migrator

Josef Machytka
josef.machytka@gmail.com

Boldly Migrate to PostgreSQL
with credativ-pg-migrator

Use our new Open Source Tool
Your Data Deserves the Best

Josef Machytka <josef.machytka@credativ.de>

2025-06-27 Swiss PostgreSQL Day 2025 lightning talk

credativ GmbH

• Founded 1999 in Jülich, Germany

• Close ties to Open-Source Community

• More than 40 Open-Source experts

• Consulting, development, training, support (3rd-level / 24x7)

• Open-Source infrastructure with Linux, Kubernetes and Proxmox

• Open-Source databases with PostgreSQL

• DevSecOps with Ansible, Puppet, Terraform and others

• Since 2025 independent owner-managed company again

Josef Machytka <josef.machytka@credativ.de> credativ GmbH 1

Main Reasons for Migration

• Growing licensing payments for proprietary databases

• Lack of support and new features for legacy DBs

• No plans for future development of some legacy DBs

• In some cases lack of administrators, shrinking community

• Legacy DBs often run on old hardware / outdated OS

• Knowledge is often lost

• “History became legend. Legend became myth.”

AI images without credits

created by the author

using DeepDreamGenerator

Josef Machytka <josef.machytka@credativ.de> credativ GmbH 2

Different Migration Tools Exist

• Different tools are available for migrations

• Open source, and commercial - with specific use cases

• Some use CDC (Change Data Capture) & minimal downtime

• Others require downtime and offline migration

• Changes in open source projects can be slow

• Some of them are not maintained anymore

• Our idea is to unify multiple migration use cases

• To dynamically address issues we created credativ-pg-migrator

• We can quickly add new features for specific use cases

Josef Machytka <josef.machytka@credativ.de> credativ GmbH 3

Meet credativ-pg-migrator

• Inspired by pgloader created by Dimitri Fontaine

• Intended for offline migrations, speed depends on hardware

• Written in Python - JDBC, ODBC or python native DB access

• Other languages have limited support for older DBs

• Written in classes, dynamicly pluggable connectors

• Uses well documented and stable libraries

• Pyodbc, JayDeBeApi, cx_Oracle, psycopg2, mysql, ...

• YAML configuration file, text log file

Josef Machytka <josef.machytka@credativ.de> credativ GmbH 4

credativ-pg-migrator - Architecture

• Modular structure: Parser, Planner, Orchestrator, Workers

• Runs parallel workers, one reader and writer per table

• Speed of migration depends mainly on the hardware

• Creates and fills migration protocol tables

• Protocol tables contain all details about migrated objects

• Outputs detailed INFO and DEBUG messages

Josef Machytka <josef.machytka@credativ.de> credativ GmbH 5

credativ-pg-migrator - Features

• Target database is always PostgreSQL

• Supports 8 different source databases

• Informix, Oracle, Sybase ASE, SQL Anywhere,

• IBM DB2 LUW, MS SQL Server, MySQL/MariaDB

• PostgreSQL to PostgreSQL for special use cases

• Migrates complete data model from all of them

• Tables, data, indexes, constraints, views

• Allows multiple custom adjustments

Josef Machytka <josef.machytka@credativ.de> credativ GmbH 6

credativ-pg-migrator - Customizations

• Configurable scope - only schema, only data, both

• Yes/No, Include/exclude - tables, views, funcs, triggers

• Custom defined adjustments:

• Replace Data types (numeric PKs to BIGINT, UDF to standard type)

• Replace Default values (different names of SQL funcs)

• Subtitutions of Remote objects references (cross-db refs like db1@tab1)

• Limitatins for Data migrations (time limits: created_at >=, ID in SELECT)

Josef Machytka <josef.machytka@credativ.de> credativ GmbH 7

credativ-pg-migrator - Other Features

• From Informix can convert Functions, Procedures, Triggers

• Funcs, procs, triggers - yes/no, include/exclude

• Success rate of code conversion 80 to 90%

• Errors mostly due to missing tables, renamed objects/columns

• Some statements may require small manual adjustments

• Conversion of code can be easily added for other DBs too

Josef Machytka <josef.machytka@credativ.de> credativ GmbH 8

Future plans for credativ-pg-migrator

• Currently we are adding:

• Pre-migration analysis of source database

• Analysis of source tables for partitioning/data

• Configurable partitioning for target tables

• Migration of materialized views for relevant DBs

• Conversion of procs, funcs, triggers for supported DBs on demand

• Other source databases on demand

Josef Machytka <josef.machytka@credativ.de> credativ GmbH 9

Open Source Version 0.9.0

GitHub repository - github.com/credativ/credativ-pg-migrator

Released under the GNU General Public License, version 3 (or any later version)

Available also on PyPi - pypi.org/project/credativ-pg-migrator/

I created this tool and many thanks to my colleague Michael Banck

for all the hard work with open sourcing & publishing it!

Josef Machytka <josef.machytka@credativ.de> credativ GmbH 10

Kudos for the rest of us
Pavlo Golub

pavlo.golub@gmail.com

Kudos for the rest of us
Celebrating all contributions to the PostgreSQL project.

Code contributions and patches
to Core are very visible, but don’t
make a community.

Floor Dress

https://www.postgresql.org/about/policies/contributors/

https://www.postgresql.org/about/policies/contributors/

Recognize!

● https://postgres-contrib.org/

● Send submissions to:

○ contact@postgres-contrib.org

Efficient Web Development with
SeaORM and PostgreSQL.

Audrius Meškauskas
audrius.meskauskas@gmail.com

 1

Our application
Trees with

search
Nested tables
heavy on data

Versioning,
“code review”

 2

SeaORM
ORM mapping with Rust

 3

SeaORM
PostgreSQL NULL talks very nicely to Rust Option

 4

SeaORM
Error handling is both enforced and easy

? =“or error”

 5

Sea ORM is anynchronous

Try independently all
trees in enum array
passed, join to one
result when all done

 6

JSONB is very powerful

This can take huge
structure of any

complexity that is
defined in Rust – so

kind of schema

NULL is unknown (yet)
Franck Pachot
franck@pachot.net

In SQL a NULL column is unknown yet
a NULL primary key is known not existing

NULL is unknown,
comparing to NULL
has an unknown result.
WHERE NOT IN (...,NULL)

Foreign Key raised

only on known violation
(beware of nullable
compound FK)

= (comparison)
NULL is not an empty
string, except in some
databases (Oracle)
NULL is not a value

Outer Join returns

NULL keys for no rows
(non existing is the
absence of a row)

'' (empty string)
Some databases may
index null entries, some
may not (Oracle)

MIN, MAX with null

values (or empty sets)

GREATEST, LEAST

should return null (not PG)

Indexing
Two unknown values not
guaranteed to be unique
(same for distinct), except
NULLS NOT DISTINCT

Storage size of tables

with many nullable columns
(takes no space at the end
of a row)

UNIQUE constraint

pgstat_snap – a (very) poor
man’s ASH for PostgreSQL

Raphael Debinski
raphael.debinski@postfinance.ch

pgstat_snap – a (very) poor
man’s ASH for PostgreSQL
Swiss PGDay 2025

27.06.2025
V1.00 | öffentlich| pgstat_snap | Raphael Debinski

1

Use case - why we created this

• Every day at 8:31 an application suffered from a severe performance impact

• Instead of 5ms their calls took over one second

• At 8:32 everything was okay again

• Database was one of 20 in a PG cluster

• Pg_stat_statements and pg_stat_activity are cumulative and lack any timestamps

• Grafana is based on the cumulative values, some DBs had a line of trillions of rows inserted

• Without knowing what we are looking for, it was very hard to find the culprit

• Eventually we figured it out, one database was loading DWH data (6-200mio rows) every

day at 8:31

2V1.00 | öffentlich| pgstat_snap | Raphael Debinski27.06.2025

Pgstat_snap – what it does

• Simple sql script with some pgPl/sql functions

• When CALLed, collects timestamped snapshots of pg_stat_statements and pg_stat_activity

• Two views provide the difference between each snapshot for every combination of queryid

and datid

3V1.00 | öffentlich| pgstat_snap | Raphael Debinski27.06.2025

Workflow

1. Install it when needed:

psql

\i /path/to/pgstat_snap.sql

2. Collect Snapshots, for example every second for 60 seconds

CALL pgstat_snap.create_snapshot(1, 60);

3. Analyze

select * from pgstat_snap_diff order by 1;

4. Uninstall

SELECT pgstat_snap.uninstall();

DROP SCHEMA pgstat_snap CASCADE;

4V1.00 | öffentlich| pgstat_snap | Raphael Debinski27.06.2025

Sample Output

snapsho
t_time

queryid query datname usename
wait_eve
nt_type

wait_eve
nt

rows_d calls_d
exec_ms
_d

sb_hit_d
sb_read
_d

sb_dirt_d
sb_write_
d

2025-
03-25
11:00:19

438014
460630
068946
8

UPDATE
pgbench
_tell

postgres postgres Lock
transacti
onid

4485 4485
986.262
098

22827 0 0 0

2025-
03-25
11:00:20

438014
460630
068946
8

UPDATE
pgbench
_tell

postgres postgres Lock
transacti
onid

1204 1204
228.822
413

6115 0 0 0

2025-
03-25
11:00:20

707333
294732
559880
9

UPDATE
pgbench
_bran

postgres postgres Lock
transacti
onid

1204 1204
1758.19
0499

5655 0 0 0

2025-
03-25
11:00:21

707333
294732
559880
9

UPDATE
pgbench
_bran

postgres postgres Lock
transacti
onid

1273 1273
2009.22
7575

6024 0 0 0

2025-
03-25
11:00:22

293103
368028
734900
1

UPDATE
pgbench
_acco

postgres postgres Client
ClientRea
d

9377 9377
1818.46
4415

66121 3699

5V1.00 | öffentlich| pgstat_snap | Raphael Debinski27.06.2025

select * from pgstat_snap_diff order by 1;

Other queries

6V1.00 | öffentlich| pgstat_snap | Raphael Debinski27.06.2025

• What was every query doing?

select * from pgstat_snap_diff order by 2,1;

• Which database touched the most rows?

select sum(rows_d),datname from pgstat_snap_diff group by datname;

• Which query DML touched the most rows?

select sum(rows_d),queryid,query from pgstat_snap_diff where

upper(query) not like 'SELECT%' group by queryid,query;

• What wait events happened which weren’t of type client?

select * from pgstat_snap_diff where wait_event_type is not null and

wait_event_type <> 'Client' order by 2,1;

Get it on github

7V1.00 | öffentlich| pgstat_snap | Raphael Debinski27.06.2025

Script and full documentation:

https://github.com/raphideb/pgstat_snap

https://github.com/raphideb/pgstat_snap

ML for Systems and Systems
for ML
Luigi Nardi

luigi@dbtune.com

Luigi Nardi, Ph.D.
Founder & CEO, DBtune

ML for Systems and Systems for ML

MLSys: ML for Systems and Systems for ML

"ML for Systems" uses ML to make computer systems better, while
"Systems for ML" makes better systems so that ML can be better

Luigi Nardi

Focus: Building and optimizing the computer systems that are necessary to
support the training and deployment of ML models

Systems for ML

Luigi Nardi

Focus: Building and optimizing the computer systems that are necessary to
support the training and deployment of ML models

Examples:
 Developing efficient hardware accelerators for ML workloads — like TPUs
 Creating software frameworks and tools for managing ML pipelines — like TF
 Creating systems for data management for ML — like pg_vector

Systems for ML

Luigi Nardi

Focus: Building and optimizing the computer systems that are necessary to
support the training and deployment of ML models

Goal: To enable faster, more efficient, and more scalable ML by providing
the necessary system-level support

Examples:
 Developing efficient hardware accelerators for ML workloads — like TPUs
 Creating software frameworks and tools for managing ML pipelines — like TF
 Creating systems for data management for ML — like pg_vector

Systems for ML

Luigi Nardi

ML for Systems

Focus: Using ML techniques to improve the design, operation, and
optimization of computer systems

Luigi Nardi

ML for Systems

Focus: Using ML techniques to improve the design, operation, and
optimization of computer systems

Examples:
 Using ML to optimize network traffic routing — like Homunculus
 Using ML to optimize compilers — like BaCO
 Using ML to optimize database management — like DBtune

Luigi Nardi

ML for Systems

Focus: Using ML techniques to improve the design, operation, and
optimization of computer systems

Goal: To replace or enhance traditional, often manual or heuristic-based,
system designs with more adaptive and efficient ML-driven solutions

Examples:
 Using ML to optimize network traffic routing — like Homunculus
 Using ML to optimize compilers — like BaCO
 Using ML to optimize database management — like DBtune

Luigi Nardi

Travel Romania efficiently
Graph search with CTEs

Johannes Graën
johannes@selfnet.de

Travel Romania efficiently
Graph search with CTEs

Johannes Graën
Friday 27th June, 2025

Traveling in Romania

Figure by: Russell, S. J., & Norvig, P. (2010). Artificial intelligence a modern approach. London. 1

Map representation in DB – cities

CREATE TABLE c i t y (id int , name tex t) ;

INSERT INTO c i t y (id , name) VALUES (1 , ’ Oradea ’) , (2 , ’ Arad ’) ,
(3 , ’ T imisoara ’) , (4 , ’ Lugoj ’) , (5 , ’ Mehadia ’) ,
(6 , ’ Drobeta ’) , (7 , ’ S ib iu ’) , (8 , ’ Zer ind ’) ,
(9 , ’ Rimnicu V i l cea ’) , (1 0 , ’ Cra iova ’) , (1 1 , ’ P i t e s t i ’) ,
(1 2 , ’ Fagaras ’) , (1 3 , ’ Bucharest ’) , (1 4 , ’ G iu rg iu ’) ,
(1 5 , ’ U r z i cen i ’) , (1 6 , ’ Vas lu i ’) , (1 7 , ’ I a s i ’) ,
(1 8 , ’Neamt ’) , (1 9 , ’ Hirsova ’) , (20 , ’ E f o r i e ’) ;

2

Map representation in DB – connections

CREATE TABLE conn (c1 in t , c2 in t , cost i n t) ;

INSERT INTO conn (c1 , c2 , cost) VALUES (1 , 7 , 1 5 1) , (1 , 8 , 7 1) ,
(8 , 2 , 7 5) , (2 , 7 , 1 4 0) , (2 , 3 , 1 1 8) , (3 , 4 , 1 1 1) , (4 , 5 , 7 0) ,
(5 , 6 , 7 5) , (6 , 1 0 , 1 2 0) , (7 , 1 2 , 9 9) , (1 2 , 1 3 , 2 1 1) , (7 , 9 , 8 0) ,
(9 , 1 0 , 1 4 6) , (9 , 1 1 , 9 7) , (1 0 , 1 1 , 1 3 8) , (1 1 , 1 3 , 1 0 1) ,
(1 3 , 1 4 , 9 0) , (1 3 , 1 5 , 8 5) , (1 5 , 1 9 , 9 8) , (1 9 , 2 0 , 8 6) ,
(1 5 , 1 6 , 1 4 2) , (1 6 , 1 7 , 9 2) , (1 7 , 1 8 , 8 7) ;

3

Map representation in DB – bidirectional cost

CREATE VIEW biconn (source , target , cost) AS
SELECT c1 , c2 , cost
FROM conn
UNION ALL
SELECT c2 , c1 , cost
FROM conn ;

4

Questions to answer

Which paths lead from Neamt to Arad?
Which cities can be reached from Rimniu Vilcea with costs lower than 300?
Which is the most expensive route through Romania (visiting every place only once)?

5

CTE – Initial query (start position)

SELECT
0 AS step ,
id AS curr_ loc ,
ARRAY [id] AS path_ids ,
ARRAY [name] AS path_names ,
0 AS to ta l _ cos t

FROM c i t y
WHERE name = ’Neamt ’ ;

step | 0
curr_loc | 18
path_ids | {18}
path_names | {Neamt}
total_cost | 0

6

CTE – Next step (identify connected cities)

SELECT
i n i t i a l . step +1 AS step ,
biconn . t a r ge t AS curr_ loc ,
i n i t i a l . path_ids | | biconn . t a r ge t AS path_ids ,
i n i t i a l . path_names || c i t y . name AS path_names ,
i n i t i a l . t o t a l _ cos t +biconn . cost AS to ta l _ cos t

FROM (
SELECT
0 AS step ,
id AS curr_ loc ,
ARRAY [id] AS path_ids ,
ARRAY [name] AS path_names ,
0 AS to ta l _ cos t

FROM c i t y
WHERE name = ’Neamt ’

) AS i n i t i a l , biconn
LEFT JOIN c i t y ON c i t y . id = biconn . t a r ge t
WHERE biconn . source = i n i t i a l . cu r r_ loc ;

7

CTE – Next steps (continue searching)

WITH RECURSIVE search_graph (step , curr_ loc , path_ids , path_names , t o t a l _ cos t) AS
(

SELECT 0 AS step , id AS curr_ loc , ARRAY [id] AS path_ids ,
ARRAY [name] AS path_names , 0 AS to ta l _ cos t

FROM c i t y
WHERE name = ’Neamt ’
UNION ALL
SELECT step +1 , target , path_ids | | target , path_names ||name , to t a l _ cos t + cost
FROM search_graph , biconn
LEFT JOIN c i t y ON c i t y . id = biconn . t a r ge t
WHERE biconn . source = cur r_ loc
AND biconn . t a r ge t NOT IN (SELECT unnest (search_graph . path_ids))

)
SELECT *
FROM search_graph ;

8

Routes from Neamt to Arad (with costs less than 1000)

WITH RECURSIVE search_graph (step , curr_ loc , path_ids , path_names , t o t a l _ cos t) AS
(. . .)
SELECT *
FROM search_graph
JOIN c i t y ON cur r_ loc = c i t y . id
WHERE c i t y . name = ’ Arad ’
AND to ta l _ cos t < 1000 ;

9

Results

step | 7
curr_loc | 2
path_ids | {18,17,16,15,13,12,7,2}
path_names | {Neamt,Iasi,Vaslui,Urziceni,Bucharest,Fagaras,Sibiu,Arad}
total_cost | 856
id | 2
name | Arad

step | 8
curr_loc | 2
path_ids | {18,17,16,15,13,11,9,7,2}
path_names | {Neamt,Iasi,Vaslui,Urziceni,Bucharest,Pitesti,Rimnicu Vilcea,Sibiu,Arad}
total_cost | 824
id | 2
name | Arad

step | 10
curr_loc | 2
path_ids | {18,17,16,15,13,11,9,7,1,8,2}
path_names | {Neamt,Iasi,Vaslui,Urziceni,Bucharest,Pitesti,Rimnicu Vilcea,Sibiu,Oradea,Zerind,Arad}
total_cost | 981
id | 2
name | Arad 10

Cities reachable from Rimnicu Vilcea with cost < 300

WITH RECURSIVE search_graph (step , curr_ loc , path_ids , path_names , t o t a l _ cos t) AS
(

SELECT 0 AS step , id AS curr_ loc , ARRAY [id] AS path_ids ,
ARRAY [name] AS path_names , 0 AS to ta l _ cos t

FROM c i t y
WHERE name = ’ Rimnicu V i l cea ’
UNION ALL
(. . .)

)
SELECT *
FROM search_graph
WHERE to ta l _ cos t < 300
ORDER BY to ta l _ cos t ;

11

Results

step | c~ loc | path_ids | path_names | t ~ cost
−−−−−−+−−−−−−−+−−−−−−−−−−−−−−+−−−+−−−−−−−−

0 | 9 | { 9 } | { Rimnicu V i l cea } | 0
1 | 7 | { 9 , 7 } | { Rimnicu V i lcea , S ib iu } | 80
1 | 11 | { 9 , 1 1 } | { Rimnicu V i lcea , P i t e s t i } | 97
1 | 10 | { 9 , 1 0 } | { Rimnicu V i lcea , Cra iova } | 146
2 | 12 | { 9 , 7 , 1 2 } | { Rimnicu V i lcea , S ib iu , Fagaras } | 179
2 | 13 | { 9 , 1 1 , 1 3 } | { Rimnicu V i lcea , P i t e s t i , Bucharest } | 198
2 | 2 | { 9 , 7 , 2 } | { Rimnicu V i lcea , S ib iu , Arad } | 220
2 | 1 | { 9 , 7 , 1 } | { Rimnicu V i lcea , S ib iu , Oradea } | 231
2 | 10 | { 9 , 1 1 , 1 0 } | { Rimnicu V i lcea , P i t e s t i , Cra iova } | 235
2 | 6 | { 9 , 1 0 , 6 } | { Rimnicu V i lcea , Craiova , Drobeta } | 266
3 | 15 | { 9 , 1 1 , 1 3 , 1 5 } | { Rimnicu V i lcea , P i t e s t i , Bucharest , U r z i cen i } | 283
2 | 11 | { 9 , 1 0 , 1 1 } | { Rimnicu V i lcea , Craiova , P i t e s t i } | 284
3 | 14 | { 9 , 1 1 , 1 3 , 1 4 } | { Rimnicu V i lcea , P i t e s t i , Bucharest , G iu rg iu } | 288
3 | 8 | { 9 , 7 , 2 , 8 } | { Rimnicu V i lcea , S ib iu , Arad , Zer ind } | 295

(14 rows)

12

PG patching with
GitLab pipelines

Michael Hegyi
lionel.rieder@postfinance.ch

PG patching with
GitLab pipelines
Swiss PGDay, Jun. 2025
Michael Hegyi

Define «Release Kit’s» and Server (Ansible-Cluster)

2V1.00 | intern/öffentlich/vertraulich/geheim | Thema der Präsentation | Verfasser:in00.00.0000 |

gen-dyn-pipelines → Collects realtime information of all
PGClusters and servers and triggers a downstream pipeline

00.00.0000 | V1.00 | intern/öffentlich/vertraulich/geheim | Thema der Präsentation | Verfasser:in 3

Downstream I: Starts with delay – patch all PG DB Cluster (correct
minor-version) → patch etcd-node and switchover primaries to
last node

00.00.0000 | V1.00 | intern/öffentlich/vertraulich/geheim | Thema der Präsentation | Verfasser:in 4

Downstream II: Now patching OS (incl. patroni, pgexporter, pg
BackRest …) and switchover primaries from 2. node to 1. node

00.00.0000 | V1.00 | intern/öffentlich/vertraulich/geheim | Thema der Präsentation | Verfasser:in 5

Downstream III: and so on… until last node
→ Last step: quality-check – everything correctly patched?

00.00.0000 | V1.00 | intern/öffentlich/vertraulich/geheim | Thema der Präsentation | Verfasser:in 6

Everything is patched…
 … lot of work done ;-)
 Thanks

V1.00 | intern/öffentlich/vertraulich/geheim | Thema der Präsentation | Verfasser:in 700.00.0000 |

Postgres and Web3
Marlene Retterer

marlene.reiterer@cybertec.at

Postgres with Web 3
Marlene Reiterer

This is Karl

2

3

Web2 service with postgres backend

4

Web2 service with Postgres backend

5

This is Icarus (evil)

6

$$$ $$

$

7

8

9

10

11

12

Postgres on spot VM-s?
Kaarel Moppel

kaarel.moppel@gmail.com

Postgres on Spot VMs?

Kaarel Moppel

Freelance PostgreSQL Consultant

SLIDES

Postgres, postgres, postgres

We know it - the tech world in general

knows it - it’s already friggin awesome!

But wait… what if one could make it even better? Like
5x better - in about 3 minutes?

How on earth???

● Am I talking about async IO?
● Or perhaps vectorized instructions?
● Or a new columnar engine?
● …
● The Elephant in the room - managed database costs…

Spot instances!

A selection of non-critical workloads

● Dev / staging environments
● Feature testing “forks”
● Backup / DR restore testing
● Production snapshots for ad-hoc reporting / mutations
● Testing effects / feasibility of HW upgrades
● Testing critical maintenance operations like VACUUM FULL-s
● …

Spot is actually not “that” scary
If to use the Spot Instance advisor tool by AWS On average, one can expect to run

a few months uninterrupted!

Stateful databases + stateless Spot ?

● Only for the crazy? Not really…if to pick the right use case and
use the Spot statistics
○ Expected uptimes still in 99.9 - 99.95% range!

● Can get messy of course in practice without automation …
● Wouldn’t it be nice if someone else deals with the

annoying details and gives us one-liner Postgres at
unbeatable* price?

PG Spot Operator
psql "$(pg_spot_operator --region=eu-north-1 --ram-min=64 --storage-min=500 \

 --storage-type=local --tuning-profile=analytics --instance-name=mypg1 \

 --admin-user=pgspotops --admin-user-password=topsecret123 --connstr-only)"

…

INFO Current Spot discount rate in AZ eu-north-1a: -75.5% (spot $126.6 vs on-demand $516.2)

…

psql (16.4 (Ubuntu 16.4-1.pgdg24.04+2))

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, compression: off)

Type "help" for help.

pgspotops@postgres=> * Assumes local AWS CLI setup

~6x savings
compared

to RDS!

“UI” - CLI / Docker or a YAML manifest
pipx install pg-spot-operator

pg_spot_operator \
 --region ^eu \
 --ram-min 256 \
 --check-price

docker run --rm -e REGION=^eu \
 -e RAM_MIN=256 \
 -e CHECK_PRICE=y \
 pgspotops/pg-spot-operator:latest

Integrating with applications
Options:

● A "setup finished" callback script to propagate Postgres / VM
connect data somewhere

● Running in pipe-friendly “--connstr-only” mode
● Specifying an S3 (or compatible) bucket to push the connect string

into
● Writing the connect string to a file on the engine node
● Following output formats available:

○ --connstr-format = auto* | ssh | ansible | postgres

Tips for practical usage

● AWS advertised ~5% avg. eviction rate is nowhere to be
seen …

● Local storage instances have much less evictions
○ And the best $$, as EBS has no Spot discounts

● Larger, especially metal, instances have less evictions
● Need to increase the Spot CPU quotas for heavier usage
● Helpful to choose the best region near you:

○ pg_spot_operator --list-avg-spot-savings

github.com/pg-spot-ops/pg-spot-operator
Licence: Functional Source License, Version 1.1, Apache 2.0

All kinds of feedback, feature requests or

just a ⭐ would be very much appreciated!

The tower of Babel
Laurenz Albe

laurenz.albe@cybertec.at

	Slide 1: Boldly Migrate to PostgreSQL with credativ-pg-migrator
	Slide 2: Kudos for the rest of us
	Slide 3: Efficient Web Development with SeaORM and PostgreSQL.
	Slide 4: NULL is unknown (yet)
	Slide 5: pgstat_snap – a (very) poor man’s ASH for PostgreSQL
	Slide 6: ML for Systems and Systems for ML
	Slide 7: Travel Romania efficiently Graph search with CTEs
	Slide 8: PG patching with GitLab pipelines
	Slide 9: Postgres and Web3
	Slide 10: Postgres on spot VM-s?
	Slide 11: The tower of Babel

