
Anatomy of Table-Level Locks in 
PostgreSQL
Gülçin Yıldırım Jelinek, Staff Engineer @ Xata

Swiss PGDay, June 26 2025

1



2

Current:
● Staff Engineer at Xata

● Postgres Contributor

● Co-founder of Prague PostgreSQL Meetup

● Co-founder & General Coordinator of Kadin Yazilimci Women Devs Turkey)

● Co-founder & Chair of Diva: Dive into AI Conference

Past:
● Board Member at Postgres Europe

● Staff Engineer at EDB, 2ndQuadrant

Select * from me;

https://xata.io/
https://www.postgresql.org/community/contributors/
https://www.meetup.com/prague-postgresql-meetup
https://x.com/kadinyazilimci
https://2024.divaconf.com/
https://www.postgresql.eu/


3

Grüezi! Love Swiss PGDay! 2nd time in Rapperswil 😊



4

MVCC01 Reducing Locking Impact04

DDL Locks02 pgroll05

Postgres Lock Queue03



Locks

5

Concurrency primitive

Ensures conflicting actions donʼt happen in parallel

Used everywhere



Postgres lock avoidance

6

Uses MVCC for DML

Writes make new copy of data

Reads donʼt block writes, writes donʼt block reads

But even reads still lock objects (tables, types, views)



MVCC example

7



Why we lock

8

Reduces the throughput

May increase latency - Loss of performance

Correctness - Different Isolation Levels



DDL

9

Often needs stronger lock modes on objects

Especially things like ALTER TABLE, VACUUM FULL

May block other DDL, DML or even SELECTs accessing same object

Every DDL command (and sometimes sub-command) is different



10

MVCC will protect you from writes blocking 
reads, but not from object locks taken by 
DDL.

Different variants of the same DDL command may need very different lock 
strength.



11

Table-level lock modes

ACCESS SHARE  SELECTs

ROW SHARE  SELECT FOR UPDATE/SHARE

ROW EXCLUSIVE  DML INSERT/UPDATE/DELETE/MERGE

SHARE UPDATE EXCLUSIVE  VACUUM, ANALYZE, CREATE INDEX CONCURRENTLY

SHARE  CREATE INDEX

SHARE ROW EXCLUSIVE  CREATE TRIGGER

EXCLUSIVE  REFRESH MATERIALIZED VIEW CONCURRENTLY

ACCESS EXCLUSIVE  DROP TABLE, TRUNCATE, some forms of ALTER TABLE, VACUUM FULL



Table-level lock modes

12

Different modes conflict with different other modes

ACCESS EXCLUSIVE conflicts with everything, including ACCESS SHARE SELECT

Postgres has many optimizations to take weaker lock modes when it can

But nothing is perfect, it will still take strong locks on some DDL

Once a transaction takes a lock, it holds it even when the statement has finished



13

DDL may block writes and/or reads for the 
whole run time of the transaction.

Donʼt mix commands that need strong locks with other commands in the 
same transaction.



Lock queue

14

When requested lock mode conflicts with already acquired lock mode by different 
backend, it needs to wait

By default, it waits forever and can stall everything unless you specify lock_timeout

Waiting locks form a lock queue

The queue is not visible in pg_locks, use pg_blocking_pids() to see what other 
backends blocks a specific backend

Locks that are ahead in the queue can block locks that are behind them in the queue



15

Use lock_timeout to limit how long 
something waits for lock.

Using lock_timeout for DDL commands is often enough. You must be 
able to handle failures, for example retry the DDL again.



16

1. Long running SELECT holds ACCESS SHARE LOCK

2. ALTER TABLE DETACH PARTITION needs a brief ACCESS EXCLUSIVE 
LOCK

3. They conflict so ALTER TABLE is put into lock queue

4. Another 30 backends try to do SELECTs

5. They conflict with the ALTER TABLEs lock, so they are put into the lock 
queue behind it

6. All access to the given table is now queued behind and no processing 
happens

Lock queue blocking example



17

Any long-running query can cause 
blocking during schema changes.

The cumulative waiting effect can be mitigated by lock_timeout 
(remember takeaway #3.



18

● Use CONCURRENTLY commands

○ CREATE INDEX CONCURRENTLY

○ ALTER TABLE DETACH PARTITION CONCURRENTLY

● They use less locking, however

○ They take longer

○ Not transactional

○ Leave half-done work on failure

Multiple ways to achieve the same result #1



19

● ALTER TABLE mytable ADD COLUMN newcol timestamptz NOT 
NULL DEFAULT clock_timestamp()

○ ACCESS EXCLUSIVE lock, table rewrite
● Can be done in steps

○ ALTER TABLE mytable ADD COLUMN newcol timestamptz 
DEFAULT clock_timestamp()

○ UPDATE TABLE mytable SET newcol = clock_timestamp() 
WHERE newcol IS NULL

○ ALTER TABLE mytable ALTER COLUMN newcol SET NOT NULL

Multiple ways to achieve the same result #2



20

● ALTER TABLE mytable ALTER COLUMN newcol SET NOT 
NULL

● Can be further split into

○ ALTER TABLE mytable ADD CONSTRAINT 
mytable_newcol_not_null CHECK (newcol IS NOT 
NULL) NOT VALID

○ ALTER TABLE mytable VALIDATE CONSTRAINT 
mytable_newcol_not_null

○ This way the scan during VALIDATE CONSTRAINT does not 
block writes

Multiple ways to achieve the same result #2 continued



21

Try to find an approach that does less 
locking.

Postgres manual contains all the CONCURRENTLY commands. 

Splitting actions takes expertise and some things are impossible (or very 
hard) to do without heavy locking from plain SQL.



22

● ALTER TABLE mytable ADD COLUMN newcol int NOT 
NULL DEFAULT 1

● Still takes ACCESS EXCLUSIVE lock

● Does not rewrite table because 1 is constant and can be 
stored as metadata

● This used to rewrite in the old versions of Postgres just 
like the previous example

Postgres improves over time



23

Make sure you are running the newest 
version of Postgres.

Improvements in locking and even how long the command takes (and 
holds the lock) happens in newer versions.

New CONCURRENTLY command variants are added in newer versions.



24

Zero-downtime, reversible schema 
changes for Postgres



25

Some Postgres schema changes are difficult

● Locking issues (most ALTER statements take the ACCESS EXCLUSIVE 

lock)

● Data backfill (e.g. add a column with unique constraints)

● Require multiple steps (e.g renaming a column)

● Backwards incompatible with old or new versions of the application 

(e.g. dropping a column)

Motivation



26



27

● Higher level operations
● Automatic Expand/Contract pattern
● Multi-version schema views

How does pgroll work?



28

Higher level operations 

● Instead of ALTER statements, pgroll uses higher level operations:

○ Add/rename column

○ Change type of column

○ Add index/constraint

● Backfilling of data is represented in the JSON



29

Automated Expand and Contract pattern

● Temporary columns are added to the physical table

● Data is backfilled and transformed in background

● Views hide or show the different columns

● Temporary columns are deleted when no longer needed



30

Multiple schema versions via views

https://xata.io/blog/multi-version-schema-migrations

Workflow is always the 
same:

● Start migration

● Do a (rolling) upgrade 
of your application

● Finalize the migration



31

Different version of the schema are exposed via views

● Temporary columns 
are added to the 
physical table

● Data is backfilled and 
transformed in 
background

● Views hide or show 
the different columns



32

How: Application selects its version by setting the `search_path`



33

How: Automatic backfilling

● The “upˮ SQL expression is used to 
convert or generate the required 
data

● You can control the batch size and 
rate



34

How: Triggers update and downgrade data in both directions

What about new writes to the table?

● Triggers are installed to convert the data 
“upˮ and “downˮ

Note: dual write at the column level is 
necessary here, but youʼd have to do it 
anyway.



35

The “trylockˮ trick is built-in

● Generated ALTER is prefixed with 
a SET lock_timeout command

● Avoids issues with the lock queue



36

● Rollback is easy - just drop the views and intermediary columns.

● The tool takes care of locking issues and common issues.

● The merging workflow is always the same:
○ Start the pgroll migration
○ Roll-out the application upgrade (can be blue-green)
○ Complete the pgroll migration

Benefits



37

Smart tools like pgroll can help you avoid 
many common pitfalls.

Zero-downtime, reversible schema changes are possible.



38

For more

https://github.com/xataio/pgroll https://pgroll.com/blog

https://github.com/xataio/pgroll
https://pgroll.com/blog


39


