
Logical replication
- for fun and profit
Patrick Stählin, Aiven

Trying it out

Quick demo

Agenda

01.

02.

03.

04. Profit?

Showcasing a couple of
use-cases.

History of replication

How did we end up with
replication in PostgreSQL?

What is logical
replication

Short primer on how it all
works.

Times have changed

Application

Database

Times have changed

Application

Database

Analytics

Book-
keeping

OrdersAI
Models Warehouse

Stream-
Processing

What is replication?
“Replication [...] refers to maintaining multiple copies of data,
processes, or resources to ensure consistency across redundant
componentsˮ

https://en.wikipedia.org/wiki/Replication_(computing)

https://en.wikipedia.org/wiki/Replication_(computing)

Replication
● Physical
● Logical

How did we get here
● PG 7.1 introduced the write-ahead-log WAL) in 2001

● PG 8.0 added point-in-time-recovery PITR) in 2005

● PG 8.3 “replicationˮ with pg_replay in 2008

● PG 9.0 streaming replication/hot-standby in 2010

● PG 9.4 replication slots/logical replication in 2015

● PG 10.0 publication/subscription support in 2017

Source:
https://peter.eisentraut.org/blog/2015/03/03/the-history-of-replicati
on-in-postgresql, PG changelogs

https://peter.eisentraut.org/blog/2015/03/03/the-history-of-replication-in-postgresql
https://peter.eisentraut.org/blog/2015/03/03/the-history-of-replication-in-postgresql

How it works
● Publication

● Subscription

● (replication slot)

Publication
● Per database

● Describes which tables/columns are published. Plus optional

filters on rows WHERE condition).

● Can be multiple/all tables

Publication
CREATE PUBLICATION name
 [FOR ALL TABLES
 | FOR publication_object [, ...]]
 [WITH (publication_parameter [= value] [, ...])]

where publication_object is one of:

 TABLE [ONLY] table_name
 [*]
 [(column_name [, ...])]
 [WHERE (expression)]
 [, ...]
 TABLES IN SCHEMA { schema_name | CURRENT_SCHEMA } [, ...]

https://www.postgresql.org/docs/current/sql-createpublication.html

https://www.postgresql.org/docs/current/sql-createpublication.html

Subscription
● Per database

● Describes how to connect to the publication

● Lots of options

Subscription
CREATE SUBSCRIPTION subscription_name
 CONNECTION ' conninfo'
 PUBLICATION publication_name [, ...]
 [WITH (subscription_parameter [= value] [, ...])]

https://www.postgresql.org/docs/current/sql-createsubscription.html

https://www.postgresql.org/docs/current/sql-createsubscription.html

Important subscription parameters
● create_slot / slot_name

● binary

● copy_data

● streaming

● origin

● failover

Replication slot
● Blocks deletion of WAL files
● Is usually created automatically (unless you prevent it)
● Manual creation:

SELECT * FROM pg_create_logical_replication_slot(
 'sub1', 'pgoutput'
);

WAL sender
● Handles both physical and logical replication

● Keeps track of transactions

● Sends completed* transactions to a output plugins

WAL sender: output plugins
● pgoutput (default)

● test_decoding

● wal2json

● decoderbufs

● …

WAL file
● Consists of records, “byte-changes in pagesˮ

● With wal_level = logical , the WAL file is augmented with

records on what really changed

$ /usr/pgsql-16/bin/pg_waldump
testdb6001/pg_wal/000000010000000000000002
rmgr: Sequence desc: LOG rel 1663/5/16384, blkref #0: rel
1663/5/16384 blk 0
rmgr: Heap desc: INSERT+INIT off: 1, flags: 0x08,
blkref #0: rel 1663/5/16385 blk 0
rmgr: Btree desc: NEWROOT level: 0, blkref #0: rel
1663/5/16391 blk 1, blkref #2: rel 1663/5/16391 blk 0
rmgr: Btree desc: INSERT_LEAF off: 1, blkref #0: rel
1663/5/16391 blk 1
rmgr: Transaction desc: COMMIT 2025-06-24 17:01:46.642249
CEST
rmgr: XLOG desc: SWITCH

Apply worker
● Creates tablesync workers for the initial synchronization
● Once synced up, it applies changes sent to it

https://www.postgresql.fastware.com/blog/inside-logical-replication-in-postgresql

https://www.postgresql.fastware.com/blog/inside-logical-replication-in-postgresql

Demo!
● CREATE TABLE beers(id SERIAL PRIMARY KEY, name

VARCHAR);
● INSERT INTO beers(name) values

(‘Feldschlösschen’);
● CREATE PUBLICATION beer_pub FOR TABLE beers;

● CREATE SUBSCRIPTION beer_sub CONNECTION ‘...’
PUBLICATION beer_pub;

● INSERT INTO beers(name) values (‘Quöllfrisch’);

How does it work
 170649 ? Ss 0:00 | _ /usr/pgsql-16/bin/postgres -D testdb6001

 170650 ? Ss 0:00 | _ postgres: checkpointer

 170651 ? Ss 0:00 | _ postgres: background writer

 170653 ? Ss 0:00 | _ postgres: walwriter

 170654 ? Ss 0:00 | _ postgres: autovacuum launcher

 170655 ? Ss 0:00 | _ postgres: logical replication launcher

 170657 ? Ss 0:00 | _ postgres: patrick.staehlin postgres ::1(33850) idle

 176575 ? Ss 0:00 | _ postgres: walsender patrick.staehlin postgres

[local] START_REPLICATION

How does it work
 176149 ? Ss 0:00 _ /usr/pgsql-16/bin/postgres -D testdb6002

 176150 ? Ss 0:00 _ postgres: checkpointer

 176151 ? Ss 0:00 _ postgres: background writer

 176153 ? Ss 0:00 _ postgres: walwriter

 176154 ? Ss 0:00 _ postgres: autovacuum launcher

 176155 ? Ss 0:00 _ postgres: logical replication launcher

 176157 ? Ss 0:00 _ postgres: patrick.staehlin postgres ::1(38860) idle

 176574 ? Ss 0:00 _ postgres: logical replication apply worker for

subscription 16394

Caveats
● Monitor your replication slots
● DDL statements are not replicated
● Replication slots are not replicated (prior to PG17
● Replication slots are dropped during major upgrades (prior to

PG17
● No re-mapping of columns or tables (names/types must match)
● Tables without primary keys require REPLICA IDENTITY FULL
● Initial COPY can consume a huge amount of resources
● Large transactions can be an issue (mostly pre PG14
● Sometimes still rough around the edges

Showcase 1: CDC
● Capture data for 3rd party systems
● Leave GDPR/DSG relevant information in one system
● Put changes in a queue for processing

Showcase 2: Analytics
● Main database needs different indices
● Specialized indices are needed for faster analytics
● ⇒ Schemas can differ so we can have different indices

Showcase 3: Upgrade in stages
● Major database upgrade can be risky
● Logical replication works between different versions
● ⇒ You can replicate parts of your data a new PG version and

route your requests there

Showcase 4: Zero downtime PG upgrade
● PG upgrades are scary
● Especially if you canʼt afford downtime

Showcase 4: Zero downtime PG upgrade
● You need a load-balancer/pooler
● Two servers, primary and standby
● pg_createsubscriber - new in PG17

○ Creates a logical replica from a physical one
○ You need access to the data-directory

● pg_ctl stop … standby
● pg_upgrade … standby
● Take backup
● Initialize new standby from backup

Thank you!

Please monitor your replication slots!

Senior Software Engineer, Aiven

PostgreSQL team

patrick.staehlin@aiven.io

Patrick Stählin

https://www.linkedin.com/in/patrickstaehlin/

@packi.ch Bsky

http://packi.ch

start_server.sh
#!/bin/bash
VERSION=$1
PORT=$2

/usr/pgsql-$VERSION/bin/initdb testdb$PORT
printf "\nport = $PORT\nwal_level =
logical\nunix_socket_directories = '/tmp'" >>
testdb$PORT/postgresql.conf
/usr/pgsql-$VERSION/bin/pg_ctl -D testdb$PORT -l logfile$PORT start
/usr/pgsql-$VERSION/bin/psql -h localhost -p $PORT postgres

