
Logical replication 
- for fun and profit
Patrick Stählin, Aiven



Trying it out

Quick demo

Agenda

01.

02.

03.

04. Profit?

Showcasing a couple of 
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works.
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What is replication?
“Replication [...] refers to maintaining multiple copies of data, 
processes, or resources to ensure consistency across redundant 
componentsˮ

https://en.wikipedia.org/wiki/Replication_(computing) 

https://en.wikipedia.org/wiki/Replication_(computing)


Replication
● Physical
● Logical



How did we get here
● PG 7.1 introduced the write-ahead-log WAL) in 2001

● PG 8.0 added point-in-time-recovery PITR) in 2005

● PG 8.3 “replicationˮ with pg_replay in 2008

● PG 9.0 streaming replication/hot-standby in 2010

● PG 9.4 replication slots/logical replication in 2015

● PG 10.0 publication/subscription support in 2017

Source: 
https://peter.eisentraut.org/blog/2015/03/03/the-history-of-replicati
on-in-postgresql, PG changelogs

https://peter.eisentraut.org/blog/2015/03/03/the-history-of-replication-in-postgresql
https://peter.eisentraut.org/blog/2015/03/03/the-history-of-replication-in-postgresql


How it works
● Publication

● Subscription

● (replication slot)



Publication
● Per database

● Describes which tables/columns are published. Plus optional 

filters on rows WHERE condition).

● Can be multiple/all tables



Publication
CREATE PUBLICATION name
    [ FOR ALL TABLES
      | FOR publication_object [, ... ] ]
    [ WITH ( publication_parameter [= value] [, ... ] ) ]

where publication_object is one of:

    TABLE [ ONLY ] table_name 
         [ * ] 
         [ ( column_name [, ... ] ) ] 
         [ WHERE ( expression ) ] 
         [, ... ]
    TABLES IN SCHEMA { schema_name | CURRENT_SCHEMA } [, ... ]

https://www.postgresql.org/docs/current/sql-createpublication.html 

https://www.postgresql.org/docs/current/sql-createpublication.html


Subscription
● Per database

● Describes how to connect to the publication

● Lots of options



Subscription
CREATE SUBSCRIPTION subscription_name
    CONNECTION ' conninfo'
    PUBLICATION publication_name [, ...]
    [ WITH ( subscription_parameter [= value] [, ... ] ) ]

https://www.postgresql.org/docs/current/sql-createsubscription.html 

https://www.postgresql.org/docs/current/sql-createsubscription.html


Important subscription parameters
● create_slot / slot_name

● binary

● copy_data

● streaming

● origin

● failover



Replication slot
● Blocks deletion of WAL files
● Is usually created automatically (unless you prevent it)
● Manual creation:

SELECT * FROM pg_create_logical_replication_slot(
    'sub1', 'pgoutput'
);



WAL sender
● Handles both physical and logical replication

● Keeps track of transactions

● Sends completed* transactions to a output plugins



WAL sender: output plugins
● pgoutput (default)

● test_decoding

● wal2json

● decoderbufs

● …



WAL file
● Consists of records, “byte-changes in pagesˮ

● With wal_level = logical , the WAL file is augmented with 

records on what really changed



$ /usr/pgsql-16/bin/pg_waldump 
testdb6001/pg_wal/000000010000000000000002
rmgr: Sequence desc: LOG rel 1663/5/16384, blkref #0: rel 
1663/5/16384 blk 0
rmgr: Heap    desc: INSERT+INIT off: 1, flags: 0x08, 
blkref #0: rel 1663/5/16385 blk 0
rmgr: Btree   desc: NEWROOT level: 0, blkref #0: rel 
1663/5/16391 blk 1, blkref #2: rel 1663/5/16391 blk 0
rmgr: Btree   desc: INSERT_LEAF off: 1, blkref #0: rel 
1663/5/16391 blk 1
rmgr: Transaction desc: COMMIT 2025-06-24 17:01:46.642249 
CEST
rmgr: XLOG    desc: SWITCH



Apply worker
● Creates tablesync workers for the initial synchronization
● Once synced up, it applies changes sent to it



https://www.postgresql.fastware.com/blog/inside-logical-replication-in-postgresql 

https://www.postgresql.fastware.com/blog/inside-logical-replication-in-postgresql


Demo!
● CREATE TABLE beers(id SERIAL PRIMARY KEY, name 

VARCHAR); 
● INSERT INTO beers(name) values 

(‘Feldschlösschen’);
● CREATE PUBLICATION beer_pub FOR TABLE beers;

● CREATE SUBSCRIPTION beer_sub CONNECTION ‘...’ 
PUBLICATION beer_pub;

● INSERT INTO beers(name) values (‘Quöllfrisch’);



How does it work
 170649 ?    Ss 0:00  |   \_ /usr/pgsql-16/bin/postgres -D testdb6001

 170650 ?    Ss 0:00  |   \_ postgres: checkpointer

 170651 ?    Ss 0:00  |   \_ postgres: background writer

 170653 ?    Ss 0:00  |   \_ postgres: walwriter

 170654 ?    Ss 0:00  |   \_ postgres: autovacuum launcher

 170655 ?    Ss 0:00  |   \_ postgres: logical replication launcher

 170657 ?    Ss 0:00  |   \_ postgres: patrick.staehlin postgres ::1(33850) idle

 176575 ?    Ss 0:00  |   \_ postgres: walsender patrick.staehlin postgres 

[local] START_REPLICATION



How does it work
 176149 ?    Ss 0:00  \_ /usr/pgsql-16/bin/postgres -D testdb6002

 176150 ?    Ss 0:00      \_ postgres: checkpointer

 176151 ?    Ss 0:00      \_ postgres: background writer

 176153 ?    Ss 0:00      \_ postgres: walwriter

 176154 ?    Ss 0:00      \_ postgres: autovacuum launcher

 176155 ?    Ss 0:00      \_ postgres: logical replication launcher

 176157 ?    Ss 0:00      \_ postgres: patrick.staehlin postgres ::1(38860) idle

 176574 ?    Ss 0:00      \_ postgres: logical replication apply worker  for 

subscription 16394



Caveats
● Monitor your replication slots
● DDL statements are not replicated
● Replication slots are not replicated (prior to PG17
● Replication slots are dropped during major upgrades (prior to 

PG17
● No re-mapping of columns or tables (names/types must match)
● Tables without primary keys require REPLICA IDENTITY FULL
● Initial COPY can consume a huge amount of resources
● Large transactions can be an issue (mostly pre PG14
● Sometimes still rough around the edges



Showcase 1: CDC
● Capture data for 3rd party systems
● Leave GDPR/DSG relevant information in one system
● Put changes in a queue for processing



Showcase 2: Analytics
● Main database needs different indices
● Specialized indices are needed for faster analytics
● ⇒ Schemas can differ so we can have different indices



Showcase 3: Upgrade in stages
● Major database upgrade can be risky
● Logical replication works between different versions
● ⇒ You can replicate parts of your data a new PG version and 

route your requests there



Showcase 4: Zero downtime PG upgrade
● PG upgrades are scary
● Especially if you canʼt afford downtime



Showcase 4: Zero downtime PG upgrade
● You need a load-balancer/pooler
● Two servers, primary and standby
● pg_createsubscriber - new in PG17

○ Creates a logical replica from a physical one
○ You need access to the data-directory

● pg_ctl stop … standby
● pg_upgrade … standby
● Take backup
● Initialize new standby from backup



Thank you!
 
Please monitor your replication slots!
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start_server.sh
#!/bin/bash
VERSION=$1
PORT=$2

/usr/pgsql-$VERSION/bin/initdb testdb$PORT
printf "\nport = $PORT\nwal_level =  
logical\nunix_socket_directories = '/tmp'" >>
testdb$PORT/postgresql.conf
/usr/pgsql-$VERSION/bin/pg_ctl -D testdb$PORT -l logfile$PORT start
/usr/pgsql-$VERSION/bin/psql -h localhost -p $PORT postgres


