
Hacking pgvector for performance

Daniel Krefl
Sednai

$1.$2 @ sedn.ai

@ Swiss PGDay 2025

Sponsor

Aero aims to complement the efforts of the EU Processor Initiative (EPI) project by
developing the open-source software ecosystem required to not only improve the
efficiency of the EPI hardware but also accelerate and ease the processor’s integration
into the cloud.

Funded by the European Union. Views and opinions are however those of the author(s) only and do not necessarily reflect those of the European Union or the
HaDEA. Neither the European Union nor the granting authority can be held responsible for them. Project number: 101092850.

AERO has also received funding from UKRI under grants no. 10048318 and 10048915, and the Swiss State Secretariat for Education, Research, and
Innovation.

Intro

Aero aims to complement the efforts of the EU Processor Initiative (EPI) project by
developing the open-source software ecosystem required to not only improve the
efficiency of the EPI hardware but also accelerate and ease the processor’s integration
into the cloud.

Target platform:

European high-performance energy-efficient processor (ARM based), dedicated to high
performance computing, and designed to work with third-party accelerators, see
[https://sipearl.com/]
RHEA images kindly provided by SIPEARL

https://sipearl.com/

Intro

Aero aims to complement the efforts of the EU Processor Initiative (EPI) project by
developing the open-source software ecosystem required to not only improve the
efficiency of the EPI hardware but also accelerate and ease the processor’s integration
into the cloud.

Target platform:

[https://sipearl.com/]
RHEA images kindly provided by SIPEARL

https://sipearl.com/

Intro

Aero aims to complement the efforts of the EU Processor Initiative (EPI) project by
developing the open-source software ecosystem required to not only improve the
efficiency of the EPI hardware but also accelerate and ease the processor’s integration
into the cloud.

Objectives: [https://aero-project.eu/about/]

- Managed Programming Languages
- Native Programming Languages & Runtimes
- OS, drivers & virtualization support
- State-of-the-art cloud deployments
- Hardware acceleration for performance & security
- Adoption of the EU cloud ecosystem

https://aero-project.eu/about/

Intro

Aero aims to complement the efforts of the EU Processor Initiative (EPI) project by
developing the open-source software ecosystem required to not only improve the
efficiency of the EPI hardware but also accelerate and ease the processor’s integration
into the cloud.

Use cases / pilots:

- Automotive Digital Twins with IoT-Cloud Interoperability​

- High Performance Algorithms for Space Exploration (Gaia)

- HPC/Cloud Database Acceleration for Scientific Computing

Intro

Aero aims to complement the efforts of the EU Processor Initiative (EPI) project by
developing the open-source software ecosystem required to not only improve the
efficiency of the EPI hardware but also accelerate and ease the processor’s integration
into the cloud.

Use cases / pilots:

- Automotive Digital Twins with IoT-Cloud Interoperability​

- High Performance Algorithms for Space Exploration (Gaia)

- HPC/Cloud Database Acceleration for Scientific Computing

… GAIA …

Gaia

Gaia was a space based astronomy telescope of ESA operational 2014-2025.

Gaia has made more than three trillion observations of two billion stars and other
objects throughout our Milky Way galaxy and beyond, mapping their motions,
luminosity, temperature and composition.

Scientific objectives:

- First 3d map of our galaxy

- Insides on the origin and formation of our galaxy

- Detection of diverse variable phenomena

- Many more … see [https://www.cosmos.esa.int/web/gaia/science]

https://www.cosmos.esa.int/web/gaia/science

Gaia

Gaia was a space based astronomy telescope of ESA operational 2014-2025.

Gaia has made more than three trillion observations of two billion stars and other
objects throughout our Milky Way galaxy and beyond, mapping their motions,
luminosity, temperature and composition.

Data and compute challenge:

- Petabyte scale

- ~ 10 Billion photometric time series

- ~ 5 Billion spectra time series

Gaia

Gaia was a space based astronomy telescope of ESA operational 2014-2025.

Gaia has made more than three trillion observations of two billion stars and other
objects throughout our Milky Way galaxy and beyond, mapping their motions,
luminosity, temperature and composition.

Variability analysis @ Geneva:

- All data stored in a distributed PostgreSQL database

- Compute where data is located, as far as possible.

- PostgreSQL XC -> XL -> TBase lineage

- 6 nodes, each with 1 TB RAM and a Nvidia A100

Figure provided by K. Nienartowicz

Aero aims to complement the efforts of the EU Processor Initiative (EPI) project by
developing the open-source software ecosystem required to not only improve the
efficiency of the EPI hardware but also accelerate and ease the processor’s integration
into the cloud.

Intertwined Gaia+SED pilots:

- Process efficiently constantly increasing volumes of data.

- Enable GPU computations directly within the database

- Optimize data and compute pipeline for RHEA

Intro

Intro

Aero aims to complement the efforts of the EU Processor Initiative (EPI) project by
developing the open-source software ecosystem required to not only improve the
efficiency of the EPI hardware but also accelerate and ease the processor’s integration
into the cloud.

Intertwined Gaia+SED pilots:

- Process efficiently constantly increasing volumes of data.

- Enable GPU computations directly within the database

 Example: Hack to GPU accelerate a Postgres vector index

 (WARNING: This will be more technical …)

… VECTOR SEARCH …

Vector Search
Motivation

Many data analysis algorithms require a nearest neighbour search in a D-dim space.
Often just referred to as Vector Search.

X1

X2
GIST dataset 960d->2d embedding

Vector Search
Motivation

Many data analysis algorithms require a nearest neighbour search in a D-dim space.
Often just referred to as Vector Search.

For a query point q :

What are its k nearest neighbors?

q

X1

X2
GIST dataset 960d->2d embedding

Vector Search
Motivation

Many data analysis algorithms require a nearest neighbour search in a D-dim space.
Often just referred to as Vector Search.

For a query point q :

What are its k nearest neighbors?

Note:

Growing interest due to ML / AI
generated vector embeddings.

For instance: Document retrieval.
q

X1

X2
GIST dataset 960d->2d embedding

Vector Search
Motivation

Many data analysis algorithms require a nearest neighbour search in a D-dim space.
Often just referred to as Vector Search.

For a query point q :

What are its k nearest neighbors?

What points are close by ?

q

epsilon

X1

X2
GIST dataset 960d->2d embedding

Vector Search
Motivation

Many data analysis algorithms require a nearest neighbour search in a D-dim space.
Often just referred to as Vector Search.

For a query point q :

What are its k nearest neighbors?

What points are close by ?

Note:

Of interest for classical unsupervised
learning algorithms.

kNN, DBSCAN, ...

 Application to Gaia data

q

epsilon

Vector Search
Motivation

Many data analysis algorithms require a nearest neighbour search in a D-dim space.
Often just referred to as Vector Search.

BUT:

Requires for each query point N distance calculations + ranking.
(With N the number of datapoints in the dataset)

How to scale to large datasets ?

Vector Search
Approximate Nearest Neighbour search

Several flavours exist, but IVFFLAT is the conceptually simplest algorithm.

Vector Search
Approximate Nearest Neighbour search

Several flavours exist, but IVFFLAT is the conceptually simplest algorithm.

InVerted File Flat Index

This talk: Mainly inference will be discussed

Vector Search
Approximate Nearest Neighbour search

Several flavours exist, but IVFFLAT is the conceptually simplest algorithm.

- Build vector index on dataset
via K-means clustering

- Index each datapoint to the
closest cluster (centroid)

Vector Search
IVFFLAT inference

Several flavours exist, but IVFFLAT is the conceptually simplest algorithm.

- Build vector index on dataset
via K-means clustering

- Index each datapoint to the
closest cluster (centroid)

- Evaluate query point q only
against cluster members of
the m nearest centroids.

Recall / Performance tradeoff

BUT:
- Strongly depends on distribution of data
- Insert requires re-computation of clustering

m=3q

Vector Search
Approximate Nearest Neighbour search

A bit more conceptually challenging is HNSW. But nowadays preferred algorithm due to
generally better recall / performance behavior.

[Malkov and Yashunin, 2016]

Vector Search
Approximate Nearest Neighbour search

A bit more conceptually challenging is HNSW. But nowadays preferred algorithm due to
generally better recall / performance behavior.

[Malkov and Yashunin, 2016]

Hierarchical navigable small world

This talk: Mainly inference will be discussed

HNSW inference

A bit more conceptually challenging is HNSW. But nowadays preferred algorithm due to
generally better recall / performance behavior.

Vector Search

HNSW

L0

L1

Multi-layered graph
(figure is simplified, usually many more layers) [Malkov and Yashunin, 2016]

HNSW inference

A bit more conceptually challenging is HNSW. But nowadays preferred algorithm due to
generally better recall / performance behavior.

Vector Search

HNSW

L0

L1

Search via greedy graph traversal
(keeping closest k visited nodes along the way) [Malkov and Yashunin, 2016]

q

HNSW inference

A bit more conceptually challenging is HNSW. But nowadays preferred algorithm due to
generally better recall / performance behavior.

Vector Search

HNSW

L0

L1

[Malkov and Yashunin, 2016]

q

e

Search via greedy graph traversal
(keeping closest k visited nodes along the way)

HNSW inference

A bit more conceptually challenging is HNSW. But nowadays preferred algorithm due to
generally better recall / performance behavior.

Vector Search

HNSW

L0

L1

[Malkov and Yashunin, 2016]

q

e

Search via greedy graph traversal
(keeping closest k visited nodes along the way)

HNSW inference

A bit more conceptually challenging is HNSW. But nowadays preferred algorithm due to
generally better recall / performance behavior.

Vector Search

HNSW

L0

L1

[Malkov and Yashunin, 2016]

q

e

Search via greedy graph traversal
(keeping closest k visited nodes along the way)

HNSW inference

A bit more conceptually challenging is HNSW. But nowadays preferred algorithm due to
generally better recall / performance behavior.

Vector Search

HNSW

L0

L1

[Malkov and Yashunin, 2016]

q

e

Search via greedy graph traversal
(keeping closest k visited nodes along the way)

HNSW inference

A bit more conceptually challenging is HNSW. But nowadays preferred algorithm due to
generally better recall / performance behavior.

Vector Search

HNSW

L0

L1

[Malkov and Yashunin, 2016]

q

e

Search via greedy graph traversal
(keeping closest k visited nodes along the way)

HNSW inference

A bit more conceptually challenging is HNSW. But nowadays preferred algorithm due to
generally better recall / performance behavior.

Vector Search

HNSW

L0

L1

[Malkov and Yashunin, 2016]

q

e

Search via greedy graph traversal
(keeping closest k visited nodes along the way)

HNSW inference

A bit more conceptually challenging is HNSW. But nowadays preferred algorithm due to
generally better recall / performance behavior.

Vector Search

L0

L1

[Malkov and Yashunin, 2016]

q

e

Search via greedy graph traversal
(keeping closest k visited nodes along the way)

BUT:

- Graph construction can be very
compute and memory intensive

- More difficult to parallelize

Vector Search
Postgres implementation

Most well-known and popular: pgvector
[https://github.com/pgvector/pgvector]

Introduces new PG type (vector), distance operators acting on vectors, and can build
indices for vector columns.

Exact, and HNSW or IVFFLAT based approximate vector search. Many different metrics,
but here we are mainly interested in euclidean distance (L2).

Query example:

select * from table where embedding <-> ‘[...]’ < 10 order by embedding <-> ‘[...]’ limit 10000

https://github.com/pgvector/pgvector

Vector Search
Postgres implementation

Most well-known and popular: pgvector
[https://github.com/pgvector/pgvector]

Introduces new PG type (vector), distance operators acting on vectors, and can build
indices for vector columns.

Exact, and HNSW or IVFFLAT based approximate vector search. Many different metrics,
but here we are mainly interested in euclidean distance (L2).

Query example:

select * from table where embedding <-> ‘[...]’ < 10 order by embedding <-> ‘[...]’ limit 10000

Column of vector type Metric operator (L2)
acting on vector types

Vector type
for example: ‘[3,0.1,-1.2,5]’

https://github.com/pgvector/pgvector

Vector Search
Postgres implementation

Most well-known and popular: pgvector
[https://github.com/pgvector/pgvector]

Introduces new PG type (vector), distance operators acting on vectors, and can build
indices for vector columns.

Exact, and HNSW or IVFFLAT based approximate vector search. Many different metrics,
but here we are mainly interested in euclidean distance (L2).

Query example:

select * from table where embedding <-> ‘[...]’ < 10 order by embedding <-> ‘[...]’ limit 10000

Index on vector column

Reduce number of required distance calculations via “index” / approx vector search.
(Worst case: For all rows)

https://github.com/pgvector/pgvector

Vector Search
pgvector

PostgreSQL plan generation (simplified)

FROM

WHERE

ORDER BY

LIMIT

Vector Search
pgvector

PostgreSQL plan generation (simplified)

FROM

WHERE

ORDER BY

LIMIT

Sequential or index scan
(depending on cost estimate)

Vector Search
pgvector

PostgreSQL plan generation (simplified)

FROM

WHERE

ORDER BY

LIMIT

Pgvector implements INDEXAM
(Index Access Method Interface)

Vector Search
pgvector

PostgreSQL plan generation (simplified)

FROM

WHERE

ORDER BY

LIMIT

Pgvector implements INDEXAM
(Index Access Method Interface)

Core index functions:

ambuild
aminsert
ambeginscan
amrescan
amendscan
amgettuple
…

Vector Search
pgvector

PostgreSQL plan generation (simplified)

FROM

WHERE

ORDER BY

LIMIT

Pgvector implements INDEXAM
(Index Access Method Interface)

Core index functions:

ambuild
aminsert
ambeginscan
amrescan
amendscan
amgettuple
…

One or both will
be pushed
down to
INDEXAM
implementation

More on this later …

Vector Search
pgvector

PostgreSQL plan generation (simplified)

FROM

WHERE

ORDER BY

LIMIT

Pgvector implements INDEXAM
(Index Access Method Interface)

Core index functions:

ambuild
aminsert
ambeginscan
amrescan
amendscan
amgettuple
…

One or both will
be pushed
down to
INDEXAM
implementation

More on this later …
PostgreSQL execution
ROW based

Has to return ItemPointerData
on each call (xs_heaptid)

Vector Search
pgvector

PostgreSQL plan generation (simplified)

FROM

WHERE

ORDER BY

LIMIT

Pgvector implements INDEXAM
(Index Access Method Interface)

Core index functions:

ambuild
aminsert
ambeginscan
amrescan
amendscan
amgettuple
…

One or both will
be pushed
down to
INDEXAM
implementation

More on this later …
PostgreSQL execution
ROW based

Has to return ItemPointerData
on each call (xs_heaptid)

Pointer to an item within a
disk page of a known file
(block + offset)

Vector Search
pgvector

PostgreSQL plan generation (simplified)

FROM

WHERE

ORDER BY

LIMIT

Pgvector implements INDEXAM
(Index Access Method Interface)

Core index functions:

ambuild
aminsert
ambeginscan
amrescan
amendscan
amgettuple
…

One or both will
be pushed
down to
INDEXAM
implementation

More on this later …
PostgreSQL execution
ROW based

First call:
Pgvector performs approx
vector search.

Subsequent calls:
Found ItemPointers are
returned.

Vector Search
pgvector

What about performance ?

GIST-960 dataset [http://corpus-texmex.irisa.fr/] [Jégou, Douze and Schmid, 2011]

Details:
- 1M vectors
- 960d
- 1k test vectors
- Pre-computed 100 nearest neighbors

 (Vectors given by global GIST descriptors of image dataset. GIST summarizes the gradient information for different parts of an image.)

http://corpus-texmex.irisa.fr/

Vector Search
pgvector

What about performance ?

GIST-960 dataset

Note:
- Ubuntu on i9-13900H + RTX 4070
- Standard Postgres v15

(no special compile flags besides -g)
- Pg_vector master on Mar 24, 2025

(commit 05182479a2a62e04300386b4da18be02fcb819b5)
(compiled with -O3 -march=native -g)

- Ivfflat 200 clusters; hnsw.ef_search=100
- Queried locally via python+psycopg2

(on persistent connection)
- Recall computation for ivfflat via

taking smallest # probes for fixed
recall + median at fixed recall

 Query: select id from gist order by embedding <-> "+q+" limit 100

Vector Search
pgvector

What about performance ?

GIST-960 dataset

Note:
- Ubuntu on i9-13900H + RTX 4070
- Standard Postgres v15

(no special compile flags besides -g)
- Pg_vector master on Mar 24, 2025

(commit 05182479a2a62e04300386b4da18be02fcb819b5)
(compiled with -O3 -march=native -g)

- Ivfflat 200 clusters; hnsw.ef_search=100
- Queried locally via python+psycopg2

(on persistent connection)
- Recall computation for ivfflat via

taking smallest # probes for fixed
recall + median at fixed recall

 Query: select id from gist order by embedding <-> "+q+" limit 100

Vector Search
pgvector (ivfflat)

What about performance ?

GIST-960 dataset

Ivfflat perf analysis [https://github.com/brendangregg/FlameGraph]

Time thieves:

- ReadBuffers
- Tuplesort
- L2 distance calc

https://github.com/brendangregg/FlameGraph

Vector Search
pgvector (ivfflat)

What about performance ?

pgvector github, ivfscan.c, 2025

All points in cluster(s)
are read on each call !

License of pgvector, 2025

Time thieves:

- ReadBuffers
- Tuplesort
- L2 distance calc

… HACKING PGVECTOR …

Vector Search
pgvector hack (ivfflat)

Can we do better ? [https://github.com/Sednai/pgvector/tree/AERO]

If we have sufficient memory, keep index data persistent (in Non-Postgres mem).

- No Buffers but continuous 2D arrays
- Avoiding TupleSort
- Possibility for better optimization for hardware

https://github.com/Sednai/pgvector/tree/AERO

Vector Search
pgvector hack (ivfflat)

Implementation

Own Postgres background process with task queue in shared memory.

Vector Search
pgvector hack (ivfflat)

Implementation

Own Postgres background process with task queue in shared memory.

Re-routing the index tuple scan as task to background worker during scan:

own process

Vector Search
pgvector hack (ivfflat)

Implementation

For an indexed table, we store the index vectors and corresponding location info
(ItemPointerData) as raw native arrays in Non-Postgres memory.
(The data will be persistent over the lifetime of the background process. We have not implemented active memory management yet. Background process
will crash if you run out of memory !)

C++

own process

Vector Search
pgvector hack (ivfflat)

Implementation

For a query point (vector), we compute its distance against all index vectors and
distance sort. Location infos are returned to the user process.
(More precisely, the corresponding page number and ItemPointerData are returned.)

C++

own process

Vector Search
pgvector hack (ivfflat)

What about performance ?

GIST-960 dataset

Note for ivfflat (bgw cpu):

- No special tricks
- No parallelisation
- No manual vector instructions
- No HBM memory

Query: select id from gist order by embedding <-> "+q+" limit 100

Vector Search
pgvector hack (ivfflat)

What about performance ?

GIST-960 dataset

Note for ivfflat (bgw cpu):

- No special tricks
- No parallelisation
- No manual vector instructions
- No HBM memory

Query: select id from gist order by embedding <-> "+q+" limit 100

Vector Search
pgvector hack (ivfflat)

What about performance ?

GIST-960 dataset

Note for ivfflat (bgw cpu):

- No special tricks
- No parallelisation
- No manual vector instructions
- No HBM memory

Vector Search
pgvector hack (ivfflat)

What about performance ?

GIST-960 dataset

Note for ivfflat (bgw cpu):

- No special tricks
- No parallelisation
- No manual vector instructions
- No HBM memory

Homework exercise:

Maybe can be optimized …

Vector Search
pgvector hack (ivfflat)

Can we do better ?

Since we have already a setup to keep index persistent in Non-Postgres memory, we
can easily go one step further and offload the index and compute to a GPU !

Compute of distances and sort on device.
Return only sorted index ids from device
(Mapping to location info on CPU)

Vector Search
pgvector hack (ivfflat)

Can we do better ?

Since we have already a setup to keep index persistent in Non-Postgres memory, we
can easily go one step further and offload the index and compute to a GPU !

Recall: We have 6x A100 GPUs in our distributed Postgres database

 For FP32 vectors of dim 100 that is enough to keep > 1B index points persistent

Compute of distances and sort on device
Return only sorted index ids from device
(Mapping to location info on CPU)

480 GB in additional memory !

… GPU ACCELERATED VECTOR SEARCH …

Vector Search
pgvector hack (ivfflat)

Implementation

For an indexed table, we store now the index vectors on a GPU device.
(The data will be persistent over the lifetime of the background process. We have not implemented active memory management yet. Background process
will crash if you run out of memory !)

C++ / CUDA
(essentially one big cudaMemcpy)

own process

pgvector hack (ivfflat)

Implementation

For a query point (vector), we compute its distance against all index vectors and
distance sort on device. Only ordered index ids are returned from GPU to CPU process.

Vector Search

C++ / CUDA
(custom kernels)

own process

Vector Search
pgvector hack (ivfflat)

What about performance ?

GIST-960 dataset

Query: select id from gist order by embedding <-> "+q+" limit 100

Aero aims to complement the efforts of the EU Processor Initiative (EPI) project by
developing the open-source software ecosystem required to not only improve the
efficiency of the EPI hardware but also accelerate and ease the processor’s integration
into the cloud.

Heterogeneous hardware

PROBLEM: Divers set of accelerators from different vendors (NVIDIA, AMD, INTEL,...)

oneAPI

Aero aims to complement the efforts of the EU Processor Initiative (EPI) project by
developing the open-source software ecosystem required to not only improve the
efficiency of the EPI hardware but also accelerate and ease the processor’s integration
into the cloud.

Heterogeneous hardware

oneAPI

Open, cross-industry, standards-based, unified, multi-architecture,
multi-vendor programming model, adopted by Intel.

Aero aims to complement the efforts of the EU Processor Initiative (EPI) project by
developing the open-source software ecosystem required to not only improve the
efficiency of the EPI hardware but also accelerate and ease the processor’s integration
into the cloud.

Heterogeneous hardware

oneAPI

Open, cross-industry, standards-based, unified, multi-architecture,
multi-vendor programming model, adopted by Intel.

Intel oneAPI base toolkit plugins for NVIDIA and AMD

pgvector hack (ivfflat)

Implementation

For a query point (vector), we compute its distance against all index vectors and
distance sort on device. Only ordered index ids are returned from GPU to CPU process.

Vector Search

C++ / oneAPI
(custom kernels)

own process

pgvector hack (ivfflat)

Implementation

For a query point (vector), we compute its distance against all index vectors and
distance sort on device. Only ordered index ids are returned from GPU to CPU process.

Vector Search

Vector Search
pgvector hack (ivfflat)

What about performance ?

GIST-960 dataset

Query: select id from gist order by embedding <-> "+q+" limit 100

With OpenCL CPU oneAPI backend

Vector Search
pgvector hack (ivfflat)

What about performance ?

GIST-960 dataset

Query: select id from gist order by embedding <-> "+q+" limit 100

With Nvidia GPU oneAPI backend

Vector Search
pgvector hack (ivfflat)

What about performance ?

GIST-960 dataset

Query: select id from gist order by embedding <-> "+q+" limit 100

With Nvidia GPU oneAPI backend

Seems my CUDA kernels could be improved …

Vector Search
pgvector hack (ivfflat)

What about performance ?

GIST-960 dataset

Query: select id from gist order by embedding <-> "+q+" limit 100

 Laptop GPU Laptop CPU AMD EPYC CPU [64 threads]

… A SPECIAL CASE …

Vector Search
pgvector

What we want:

Fast way to retrieve (most) points up to a max distance from a query point.

Vector Search
pgvector

What we want:

Fast way to retrieve (most) points up to a max distance from a query point.

Why ?

Core ingredient to density based clustering algorithms.

Simplified:

X1

X2

Vector Search
pgvector

What we want:

Fast way to retrieve (most) points up to a max distance from a query point.

Why ?

Core ingredient to density based clustering algorithms.

Simplified:

X1

X2

epsilon

Vector Search
pgvector

What we want:

Fast way to retrieve (most) points up to a max distance from a query point.

Why ?

Core ingredient to density based clustering algorithms.

Simplified:

X1

X2

pgvector

What we want:

Fast way to retrieve (most) points up to a max distance from a query point.

Why ?

Core ingredient to density based clustering algorithms.

Simplified:

Vector Search

X1

X2

pgvector

What we want:

Fast way to retrieve (most) points up to a max distance from a query point.

Why ?

Core ingredient to density based clustering algorithms.

Simplified:

Vector Search

X1

X2

pgvector

What we want:

Fast way to retrieve (most) points up to a max distance from a query point.

Why ?

Core ingredient to density based clustering algorithms.

Simplified:

Vector Search

X1

X2

pgvector

What we want:

Fast way to retrieve (most) points up to a max distance from a query point.

Why ?

Core ingredient to density based clustering algorithms.

Simplified:

Vector Search

X1

X2

pgvector

What we want:

Fast way to retrieve (most) points up to a max distance from a query point.

Why ?

Core ingredient to density based clustering algorithms.

Simplified:

Vector Search

X1

X2

pgvector

What we want:

Fast way to retrieve (most) points up to a max distance from a query point.

Why ?

Core ingredient to density based clustering algorithms.

Simplified:

Vector Search

X1

X2

pgvector

What we want:

Fast way to retrieve (most) points up to a max distance from a query point.

Why ?

Core ingredient to density based clustering algorithms.

Simplified:

Vector Search

X1

X2

Vector Search
pgvector

What we want:

Fast way to retrieve (most) points up to a max distance from a query point.

(From pgvector github README.md, 2025)

Vector Search
pgvector

What we want:

Fast way to retrieve (most) points up to a max distance from a query point.

(From pgvector github README.md, 2025)

Operator for L2 distance

Need quite large limit !

Vector Search
pgvector

What we want:

Fast way to retrieve (most) points up to a max distance from a query point.

PROBLEM: Very very slow …

(From pgvector github README.md, 2025)

Need quite large limit !

Vector Search
pgvector

Why ?

Let us look with GDB what actually happens for a query of type

select * from table where embedding <-> ‘[...]’ < 10 order by embedding <-> ‘[...]’ limit 10000

by setting a breakpoint at ivfscan.c:ivfflatgettuple :

Vector Search
pgvector

Why ?

Let us look with GDB what actually happens for a query of type

select * from table where embedding <-> ‘[...]’ < 10 order by embedding <-> ‘[...]’ limit 10000

by setting a breakpoint at ivfscan.c:ivfflatgettuple :

IndexScanDesc No scan keys are pushed down !

Vector Search
pgvector

Why no scan keys ?

We have to dig deeper … iss_NumScanKeys = 0 already in IndexScanState

ExecInitBuildScanKeys: quals are Null

=> Already before execution level no scan keys !

Vector Search
pgvector

Why no scan keys ?

We have to dig deeper …

Let us look into indxpath.c:

Vector Search
pgvector

Why no scan keys ?

We have to dig deeper …

Let us look into indxpath.c:

Query:

select * from table where embedding <-> ‘[...]’ < 10 …

Indexkey can not be matched !

op(indexkey, ’[...’]) op const

Vector Search
pgvector

Why no scan keys ?

We have to dig deeper …

Let us look into indxpath.c:

Query:

select * from table where embedding <-> ‘[...]’ < 10 …

Indexkey can not be matched !

op(indexkey, ’[...’]) op const=> Looks like Postgres enhancement required !

BUT: May take ages to get upstream …

Vector Search
pgvector hack

Quicker to production:

Let us introduce a new operator, thereby hacking the WHERE into the ORDER BY:

(At the time being, only for euclidean metric)

Vector Search
pgvector hack

Quicker to production:

Let us introduce a new operator, thereby hacking the WHERE into the ORDER BY:

Query:

select * from table order by embedding <!> (‘[...]’, -1, 10.0) limit 10000

Vector Search
pgvector hack

Quicker to production:

Let us introduce a new operator, thereby hacking the WHERE into the ORDER BY:

Query:

select * from table order by embedding <!> (‘[...]’, -1, 10.0) limit 10000

Will be evaluated inside of pgvector !

=> Can be executed on GPU !

Vector Search
pgvector

What about performance ?

- 2M row Gaia dataset, 79 float8 features
- 40 ivfflat clusters, ivfflat.probes = 20
- Retrieve points up to a max distance from a query point (sparse return)
- After warmup

Original pgvector

Vector Search
pgvector hack

What about performance ?

- 2M row Gaia dataset, 79 float8 features
- 40 ivfflat clusters, ivfflat.probes = 20
- Retrieve points up to a max distance from a query point (sparse return)
- After warmup

BGW with filter on CPU

Vector Search
pgvector hack

What about performance ?

- 2M row Gaia dataset, 79 float8 features
- 40 ivfflat clusters, ivfflat.probes = 20
- Retrieve points up to a max distance from a query point (sparse return)
- After warmup

BGW with filter on GPU

Vector Search
pgvector hack

What about performance ?

- 2M row Gaia dataset, 79 float8 features
- 40 ivfflat clusters, ivfflat.probes = 20
- Retrieve points up to a max distance from a query point (sparse return)
- After warmup

BGW with filter on GPU

=> 200x speedup !

Vector Search
pgvector hack

General remarks:

- No active memory management
(memory freed only upon killing the worker)

- Enough shared memory needs to be reserved for number of expected returns
- As more sparse the return, as better will be the speedup

Vector Search
pgvector hack

General remarks:

- No active memory management
(memory freed only upon killing the worker)

- Enough shared memory needs to be reserved for number of expected returns
- As more sparse the return, as better will be the speedup

Can we do more ?

- Improvements of code (GPU kernels) are possible.

- Faster initial loading via Nvidia GPUDirect (NVMe <-> GPU DMA)

- Product quantization

- For significant performance improvement, more vectorization …
(for instance, to query for several points at once)

… OUTLOOK …

Intro

Aero aims to complement the efforts of the EU Processor Initiative (EPI) project by
developing the open-source software ecosystem required to not only improve the
efficiency of the EPI hardware but also accelerate and ease the processor’s integration
into the cloud.

Intertwined Gaia+SED pilots:

- Process efficiently constantly increasing volumes of data.

- Enable GPU computations directly within the database

 Example: Hack to GPU accelerate a Postgres vector index

 (WARNING: That was actually easy …)

SED pilot:

- Enable GPU computations directly within the database

Outlook

Multi-faceted

- Adaptation of PG-Strom to distributed Postgres (XL/XC lineage)
 [https://heterodb.github.io/pg-strom/]
(for GPU acceleration of general scans, aggregates and joins …)

First milestone reached in modernizing XL/XC
(pushed XC to PGv15 with sufficient functionality)

https://heterodb.github.io/pg-strom/

Funded by the European Union. Views and opinions are however those of the author(s) only and do not necessarily reflect those of the European Union or the
HaDEA. Neither the European Union nor the granting authority can be held responsible for them. Project number: 101092850.

AERO has also received funding from UKRI under grants no. 10048318 and 10048915, and the Swiss State Secretariat for Education, Research, and
Innovation.

… THANK YOU …

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111

