Hacking pgvector for performance codna

Daniel Krefl
Sednai

$1.$2 @ sedn.ai

@ Swiss PGDay 2025

sednai

NERE

Sponsor °

NERE

Aero aims to complement the efforts of the project by
developing the open-source software ecosystem required to not only improve the

efficiency of the EPI hardware but also accelerate and ease the processor’s integration
into the cloud.

Project funded by

U K Research 0 Schweizerische Eidgenossenschaft Federal Department of Economic Affairs,

Confédération suisse Education and Research EAER
M Confederazione Svizzera State Secretariat for Education,
an n novatl on Confederaziun svizra Research and Innovation SERI

Swiss Confederation

Funded by
the European Union

Funded by the European Union. Views and opinions are however those of the author(s) only and do not necessarily reflect those of the European Union or the
HaDEA. Neither the European Union nor the granting authority can be held responsible for them. Project number: 101092850.

AERO has also received funding from UKRI under grants no. 10048318 and 10048915, and the Swiss State Secretariat for Education, Research, and
Innovation.

MANCE IIF“ 1ER

2.2 r . PIERER & ¢ 5 UNIVERSITE @)
- UBITECH . SlPE RL INNOVATION Reﬁat - EORIH - UN[VH:%D] Pisa S Ry, i‘ DE GENEVE Sean\'

C codeplay’

Intro o

NEE

Aero aims to complement the efforts of the EU Processor Initiative (EPI) project by
developing the open-source software ecosystem required to not only improve the

efficiency of the EPI hardware but also accelerate and ease the processor’s integration
into the cloud.

Target platform: R H E A‘I

HPC and Al processor

European high-performance energy-efficient processor (ARM based), dedicated to high
performance computing, and designed to work with third-party accelerators, see
[https://sipearl.com/]

RHEA images kindly provided by SIPEARL

MANCHESTER

;) RIUBITECH | (7isperrl |PIERER 4 @FORTH & sl Open Sysems (4F) UNIVERSITE @,
g}%‘ - o l INNDUHT[EN Red Hat Trmmm——— UNIVI:RS]IT)\DI Pisa g ! u p y ems 5 DE GENEVE Sedno‘

C codeplay’

https://sipearl.com/

£

Intro

NERE

Aero aims to complement the efforts of the
developing the open-source software ecosystem required to not only improve the
efficiency of the EPI hardware but also accelerate and ease the processor’s integration

into the cloud.

Target platform: R H E A‘I

HPC and Al processor

[https://sipearl.com/]

RHEA images kindly provided by SIPEARL

8fUBITECH | [//SIPEARL |PIERER < @FORTH _

project by

RHE AT

HPC and Al processor

Designed with

sy

UNIVERSITA DI PISA

80 arm® Neoverse VI cores
with 2 x 256 SVE each

4 x HBM 4 x DDR5 interfaces

UNIVERSITE @)
DE GENEVE coingi

MANCHFEIIER

(codeplay’

P
84/ Virtual Open Systems

https://sipearl.com/

Intro

NEE

Aero aims to complement the efforts of the EU Processor Initiative (EPI) project by
developing the open-source software ecosystem required to not only improve the
efficiency of the EPI hardware but also accelerate and ease the processor’s integration
into the cloud.

Objectives: [https://aero-project.eu/about/ |

- Managed Programming Languages

- Native Programming Languages & Runtimes

- OS, drivers & virtualization support

- State-of-the-art cloud deployments

- Hardware acceleration for performance & security
- Adoption of the EU cloud ecosystem

£) ;. & PIERER @ -, @) UNIVERSITE @ MANCHESTER. ‘
f, RIUBITECH ([SPEARL [IERER . Regat @FORTH _ @M Gt open spens @5 RUETE @ RS © codeplay

https://aero-project.eu/about/

LEUBITECH ((USPERL| DIERER | @ @FORTH & \Gwaiopensyuems (1) UNVERSTE @

Intro o

NEE

Aero aims to complement the efforts of the EU Processor Initiative (EPI) project by
developing the open-source software ecosystem required to not only improve the

efficiency of the EPI hardware but also accelerate and ease the processor’s integration
into the cloud.

Use cases / pilots:

Automotive Digital Twins with loT-Cloud Interoperability

High Performance Algorithms for Space Exploration (Gaia)

HPC/Cloud Database Acceleration for Scientific Computing

MANCHESTER

RedHat

UNIVERSITA DI PISA

C codeplay’

/DE GENEVE coqnai

BEUBITECH ((USPERL DIERER @ @FORTH & \G)wuei open synem| () UNVERSTE @

Intro o

NEE

Aero aims to complement the efforts of the EU Processor Initiative (EPI) project by
developing the open-source software ecosystem required to not only improve the

efficiency of the EPI hardware but also accelerate and ease the processor’s integration
into the cloud.

Use cases / pilots:

Automotive Digital Twins with loT-Cloud Interoperability

High Performance Algorithms for Space Exploration (Gaia)

- HPC/Cloud Database Acceleration for ScientLﬁi Computing

\

MANCHESTER

RedHat

UNIVERSITA DI PISA

C codeplay’

/DE GENEVE coqnai

-

sednai

... GAIA ...

Gaia was a space based astronomy telescope of ESA operational
Gaia has made more than three trillion observations of two billion stars and other
objects throughout our Milky Way galaxy and beyond, mapping their motions,
luminosity, temperature and composition.
Scientific objectives:

- First 3d map of our galaxy

- Insides on the origin and formation of our galaxy

- Detection of diverse variable phenomena

- Many more ... see [https://www.cosmos.esa.int/web/gaia/science]

https://www.cosmos.esa.int/web/gaia/science

Gaia ()

Gaia was a space based astronomy telescope of ESA operational

Gaia has made more than three trillion observations of two billion stars and other

objects throughout our Milky Way galaxy and beyond, mapping their motions,
luminosity, temperature and composition.

Data and compute challenge:
- Petabyte scale
-~ 10 Billion photometric time series

- ~ 5 Billion spectra time series

Gaia was a space based astronomy telescope of ESA operational

Gaia has made more than three trillion observations of two billion stars and other

objects throughout our Milky Way galaxy and beyond, mapping their motions,

Applications Applications

luminosity, temperature and composition.

Variability analysis @ Geneva:

> N
_-DNS load-balancing

- All data stored in a distributed PostgreSQL database (

- Compute where data is located, as far as possible.

XC cluster

- PostgreSQL XC -> XL -> TBase lineage

.]] Cdinator+ Datacde ’0’ 09 . 9. » Gt 3 [q i
- 6 nodes, each with 1 TB RAM and a Nvidia A100 Coortinator + Datanode. "0 g TG oninator+ Datanode

%

Figure provided by K. Nienartowicz

Intro o

NEE

Aero aims to complement the efforts of the EU Processor Initiative (EPI) project by
developing the open-source software ecosystem required to not only improve the

efficiency of the EPI hardware but also accelerate and ease the processor’s integration
into the cloud.

Intertwined Gaia+SED pilots:

Process efficiently constantly increasing volumes of data.

— > - Enable GPU computations directly within the database
- Optimize data and compute pipeline for RHEA
RIUBITECH ([SPEARL [IERER . neﬁat OFORTH B Guel open syuene (@5 UNVERSTE| @ | S

’ DE GENEVE

R C codeplay’

sednai

BEUBITECH ((USPERL DIERER @ @FORTH . & \Gwei opensyuenms (@) UNVERSTE| @

Intro

NEE

Aero aims to complement the efforts of the EU Processor Initiative (EPI) project by

developing the open-source software ecosystem required to not only improve the

efficiency of the EPI hardware but also accelerate and ease the processor’s integration

into the cloud.

Intertwined Gaia+SED pilots:

Process efficiently constantly increasing volumes of data.

—

Enable GPU computations directly within the database

Hack to GPU accelerate a Postgres vector index

(WARNING: This will be more technical ...)

MANCHESTER

RedHat ’ DE GENEVE

UNIVERSITA DI PISA

sednai

C codeplay’

sednai

... VECTOR SEARCH ...

Vector Search

Motivation

Many data analysis algorithms require a nearest neighbour search in a D-dim space.
Often just referred to as Vector Search.

Vector Search

Motivation

Many data analysis algorithms require a nearest neighbour search in a D-dim space.
Often just referred to as Vector Search.

For a query point g : GIST dataset 960d->2d embedding

X2 sl
What are its k nearest neighbors? i

X1

Vector Search

Motivation

Many data analysis algorithms require a nearest neighbour search in a D-dim space.

Often just referred to as Vector Search.
For a query point q :

X2
What are its k nearest neighbors?

Note:

Growing interest due to ML / Al
generated vector embeddings.

For instance: Document retrieval.

GIST dataset 960d->2d embedding

X1

Vector Search

Motivation

Many data analysis algorithms require a nearest neighbour search in a D-dim space.
Often just referred to as Vector Search.

For a query point g : GIST dataset 960d->2d embedding
X2 sl

What are its k nearest neighbors?

What points are close by ? 3

T T T T
2 4 6 8 10

X1

Vector Search

Motivation

Many data analysis algorithms require a nearest neighbour search in a D-dim space.
Often just referred to as Vector Search.

For a query point g : GIST dataset 960d->2d embedding
X2 sl

What are its k nearest neighbors?

What points are close by ? 3

Note:

Of interest for classical unsupervised -1
learning algorithms.

kNN, DBSCAN, ...

T T T T
2 4 6 8 10

— Application to Gaia data X1

Vector Search

Motivation

Many data analysis algorithms require a nearest neighbour search in a D-dim space.
Often just referred to as Vector Search.

BUT:

Requires for each query point N distance calculations + ranking.
(With N the number of datapoints in the dataset)

How to scale to large datasets ?

Vector Search

Approximate Nearest Neighbour search

Several flavours exist, but

is the conceptually simplest algorithm.

X21

DATA
°° -
® e
o® ot a
0®
?

A

X1

Vector Search

Approximate Nearest Neighbour search

Several flavours exist, but is the conceptually simplest algorithm.
. DATA
X2 e o o’o
@ S
'Y 4 ®
-
This talk: Mainly inference will be discussed ”
o® ot %
&
BB
B

A

X1

Vector Search S
sednaq

Approximate Nearest Neighbour search

Several flavours exist, but is the conceptually simplest algorithm.

- Build vector index on dataset X2 4 DATA

via K-means clustering
- Index each datapoint to the
closest cluster (centroid)

X1

Vector Search

IVFFLAT inference

Several flavours exist, but is the conceptually simplest algorithm.

DATA

L

- Build vector index on dataset .4
via K-means clustering

- Index each datapoint to the
closest cluster (centroid)

- Evaluate query point g only
against cluster members of
the m nearest centroids.

A J

BUT:
- Strongly depends on distribution of data
- Insert requires re-computation of clustering

-
v ~
‘.’

4

Vector Search A
sednaq

Approximate Nearest Neighbour search
A bit more conceptually challenging is . But nowadays preferred algorithm due to
generally better recall / performance behavior.
. DATA
X2 e o c:’o
@ S
X 4 ®
-
®, ot %
BB
B

A

X1

[Malkov and Yashunin, 2016]

-

v ~
‘.’
4

Vector Search S
sednai

Approximate Nearest Neighbour search

A bit more conceptually challenging is . But nowadays preferred algorithm due to

generally better recall / performance avior.

. DATA
X2] c:’o
® D
£ B
B

-

8% e

This talk: Mainly inference will be discussed

o® ot

]
i
B

A

X1

[Malkov and Yashunin, 2016]

Vector Search . .
sednaq

HNSW inference

A bit more conceptually challenging is . But nowadays preferred algorithm due to
generally better recall / performance behavior.
c:’o
E]

-

DATA

)

. °?

A

X1

[Malkov and Yashunin, 2016]

Vector Search . .
sednaq

HNSW inference

A bit more conceptually challenging is . But nowadays preferred algorithm due to
generally better recall / performance behavior.
c:’o
E]

-

DATA

)

®, *>
26

A

X1

[Malkov and Yashunin, 2016]

Vector Search . .
sednaq

HNSW inference

A bit more conceptually challenging is . But nowadays preferred algorithm due to
generally better recall / performance behavior.
c:’o
E]

-

DATA

)

. °?

A

X1

[Malkov and Yashunin, 2016]

Vector Search . .
sednaq

HNSW inference

A bit more conceptually challenging is . But nowadays preferred algorithm due to
generally better recall / performance behavior.
c:’o
E]

-

DATA

)

. °?

A

X1

[Malkov and Yashunin, 2016]

Vector Search . .
sednaq

HNSW inference

A bit more conceptually challenging is . But nowadays preferred algorithm due to
generally better recall / performance behavior.
c:’o
E]

-

DATA

)

. °?

A

X1

[Malkov and Yashunin, 2016]

Vector Search . .
sednaq

HNSW inference

A bit more conceptually challenging is . But nowadays preferred algorithm due to
generally better recall / performance behavior.
c:’o
E]

-

DATA

)

. °?

A

X1

[Malkov and Yashunin, 2016]

Vector Search . .
sednaq

HNSW inference

A bit more conceptually challenging is . But nowadays preferred algorithm due to
generally better recall / performance behavior.
c:’o
E]

-

DATA

)

. °?

A

X1

[Malkov and Yashunin, 2016]

Vector Search . .
sednaq

HNSW inference

A bit more conceptually challenging is . But nowadays preferred algorithm due to
generally better recall / performance behavior.
c:’o
E]

-

DATA

)

. °?

A

X1

[Malkov and Yashunin, 2016]

Vector Search . .
sednaq

HNSW inference

A bit more conceptually challenging is . But nowadays preferred algorithm due to
generally better recall / performance behavior.

- Graph construction can be very
compute and memory intensive
- More difficult to parallelize

[Malkov and Yashunin, 2016]

Vector Search

Postgres implementation

Most well-known and popular: pgvector
[https://github.com/pgvector/pgvector]

Introduces new PG type (vector), distance operators acting on vectors, and can build
indices for vector columns.

Exact, and or IVFFLAT based approximate vector search. Many different metrics,
but here we are mainly interested in euclidean distance (L2).

Query example:

select * from table where embedding <-> ‘[...]" < 10 order by embedding <-> ‘[...]" limit 10000

https://github.com/pgvector/pgvector

Vector Search S
sednai

Postgres implementation

Most well-known and popular: pgvector

[https://github.com/pgvector/pgvector]

Introduces new PG type (vector), distance operators acting on vectors, and can build

indices for vector columns.

Exact, and or IVFFLAT based approximate vector search. Many different metrics,

but here we are mainly interested in euclidean distance (L2).

Query example:
select * from table where |lembedding <-> [[...]" < 10 order by embedding <-> ‘[...]" limit 10000

/ X '\ Vector type
for example: ‘[3,0.1,-1.2,5]

Column of vector type Metric operator (L2)
acting on vector types

https://github.com/pgvector/pgvector

Vector Search

Postgres implementation

Most well-known and popular: pgvector
[https://github.com/pgvector/pgvector]

Introduces new PG type (vector), distance operators acting on vectors, and can build
indices for vector columns.

Exact, and or IVFFLAT based approximate vector search. Many different metrics,
but here we are mainly interested in euclidean distance (L2).

Query example' Index on vector column

select * from table where|lembedding <-> ‘[...]" < 10 order by embedding <-> ‘[...]" limit 10000

Reduce number of required distance calculations via “index” / approx vector search.
(Worst case: For all rows)

https://github.com/pgvector/pgvector

Vector Search

pgvector

PostgreSQL plan generation (simplified)

FROM

l

WHERE

l

ORDER BY

|

LIMIT

sednai

Vector Search

pgvector

PostgreSQL plan generation (simplified)

FROM «

l

WHERE

l

ORDER BY

|

LIMIT

Sequential or index scan
(depending on cost estimate)

Vector Search

pgvector

PostgreSQL plan generation (simplified)

Pgvector implements INDEXAM
FROM (Index Access Method Interface)

l

WHERE

l

ORDER BY

|

LIMIT

A

Vector Search

pgvector

PostgreSQL plan generation (simplified)

Pgvector implements INDEXAM
FROM (Index Access Method Interface)

i |

A

WHERE

Core index functions:

l ambuild
aminsert

ORDER BY ambeginscan

amrescan

l amendscan
amgettuple

LIMIT

Vector Search

pgvector

PostgreSQL plan generation (simplified)

Pgvector implements INDEXAM

FROM - (Index Access Method Interface)
Aa l l

One or both will ~ WHERE C index f ti)

be pushed 5 ore index functions:

down to : l

INDEXAM : ambuild

implementation : aminsert

ORDER BY ambeginscan

More on this later ... l amrescan
amendscan
amgettuple

LIMIT

Vector Search

pgvector

PostgreSQL plan generation (simplified)

P Pgvector implements INDEXAM
FROM o (Index Access Method Interface)

e |

One or both will ~ WHERE C index f .)

be pushed : ore index functions:

down to :

INDEXAM : ambuild

implementation aminsert

ORDER BY ambeginscan

More on this later ... amrescan
amendscan PostareSOL .
amgettuple ostgreSQL execution

LIMIT ' ROW based

Has to return ItemPointerData
on each call (xs_heaptid)

Vector Search =
sednai
pgvector
PostgreSQL plan generation (simplified)
- Pgvector implements INDEXAM
FROM o (Index Access Method Interface)
s l l
One or both will WHERE
b hed : Core index functions: Pointer to an item within a
div?rlestoe 5 l disk page of a known file
: ; (block + offset)
INDEXAM : ambuild
implementation : aminsert
ORDER BY ambeginscan
More on this later ... l zmgisjfrfln
amgettuple PostgreSQL execution
LIMIT ROW based il

Has to return|/temPointerData
on each call (xs_heaptid)

Vector Search

pgvector

PostgreSQL plan generation (simplified)

P Pgvector implements INDEXAM
FROM (Index Access Method Interface)

A A
- l First call:

Pgvector performs approx

WHERE vector search.

Core index functions:

One or both will

be pushed
down to : Subsequent calls:
INDEXAM : ambuild Found ltemPointers are
implementation : aminsert returned.
ORDER BY ambeginscan T
More on this later ... zm;ensdcfr,;n
;%;é;t‘u;”/'é PostgreSQL execution

LIMIT ROW based

Vector Search @

pgvector

What about performance ?

GIST-960 dataset [http://corpus-texmex.irisa.fr/] [Jégou, Douze and Schmid, 2011]

Details:
- 1M vectors
- 960d
- 1k test vectors
- Pre-computed 100 nearest neighbors

(Vectors given by global GIST descriptors of image dataset. GIST summarizes the gradient information for different parts of an image.)

http://corpus-texmex.irisa.fr/

Vector Search
pgvector

What about performance ?
GIST-960 dataset

Note:

- Ubuntu on i9-13900H + RTX 4070

- Standard Postgres v15

(no special compile flags besides -g)

- Pg_vector master on Mar 24, 2025
(commit 05182479a2a62e04300386b4dal18be02fch819b5)

(compiled with -O3 -march=native -g)

- |vfflat 200 clusters; hnsw.ef search=100
- Queried locally via python+psycopg?2

(on persistent connection)

- Recall computation for ivfflat via
taking smallest # probes for fixed
recall + median at fixed recall

Query:

queries/s

120 A
110 4

100 +

GIST-960, test set queries

« ivfflat (standard)
« hnsw

Vector Search

sednai
pgvector
What about performance ?
GIST-960 dataset
Note: 2o GIST-960, test set queries
- Ubuntu on i9-13900H + RTX 4070 Lo Do
- Standard Postgres v15 17 1
(no special compile flags besides -g) ig : . .
- Pg_vector master on Mar 24, 2025 14 1 . :
(commit 05182479a2a62e04300386b4dal8be02fcb819b5) 13 1 ‘
(compiled with -O3 -march=native _g) @ ﬁ: Beieiiganas Pcsasass
- Ivfflat 200 clusters; hnsw.ef_search=100 £ 1 . .o)
- Queried locally via python+psycopg?2 5]
(on persistent connection) 71 .
- Recall computation for ivfflat via 0 T
taking smallest # probes for fixed 4 T,
recall + median at fixed recall 2 e
l_
0 T

T T T T T T T T T
080 082 084 086 088 090 092 094 096 098 100

Query: recall

Vector Search

Ivfflat perf analysis [https://github.com/brendangregg/FlameGraph |

What about performance ?

pgvector (ivfflat)
GIST-960 dataset

ReadBuffers
Tuplesort

k=3
E
m_
Q
E
£
5
=

| | ext4 file_read_iter

x64_sys_call

ReadBufferExtended

L2 distance calc

https://github.com/brendangregg/FlameGraph

Vector Search

pgvector (ivfflat)

What about performance ?

- ReadBuffers
- Tuplesort
- L2 distance calc

Portions Copyright (c) 1996-2024, PostgresQL Global Development Group
Portions Copyright (c) 1994, The Regents of the University of California

Pernission to use, copy, modify, and distribute this software and its
docunentation for any purpose, without fee, and without a written agreement
is hereby granted, provided that the above copyright notice and this
paragraph and the following two paragraphs appear in all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING
LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS
DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO
PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

License of pgvector, 2025

sednai
buf = ReadBufferExtended(scan->indexRelation, MAIN_FORKNUM, searchPage, RBM_NORMAL, so->bas);
LockBuffer(buf, BUFFER_LOCK_SHARE);
page = BufferGetPage(buf);
maxoffno = PageCetMaxOffsetNumber(page);

for (OffsetNumber offno = FirstOffsetNumber; offno <= maxoffno; offno = OffsetNumberNext(offno))

{
IndexTuple itup;

Datum datum;
bool isnull;
ItemId itemid = PageGetItemId(page, offno);

itup = (IndexTuple) PageGetItem(page, itemid);
datum = index_getattr(itup, 1, tupdesc, &isnull);

/‘k

* Add virtual tuple

*

* Use procinfe from the index instead of scan key for

* performance

*/
ExecClearTuple(slot);
slot->tts values[@] = so->distfunc(so->prdcinfo, so->collation, datum, value);
slot->tts_isnull[@] = false;
slot->tts values[1] = PointerGetDatum(&itup->t_tid);
slot->tts_isnull[1] = false;
ExecStoreVirtualTuple(slot);

tuplesort_puttupleslot(so->sortstate, slot);

i pgvector github, ivfscan.c, 2025

sednai

... HACKING PGVECTOR ...

Vector Search

pgvector hack (ivfflat)

Can we do better ? [https://github.com/Sednai/pgvector/tree/AERO]

If we have sufficient memory, keep index data persistent (in Non-Postgres mem).
—_—

- No but continuous 2D arrays

- Avoiding

- Possibility for better optimization for hardware

I
‘ i
\ 1 1 i
| |
| Il 1
HPC and Al processor }[|‘ s ‘, '
| 18 1
| g i
I | [|
[fopyout 1 |8
: q [copytoter
Resignediwity] e — . | N B
‘ := et e "l [\' -‘2\] ‘I 1
generic file_read_iter
® [| exta _file_read_iter [} | I el 1]
80 arm® Neoverse V1 cores 1l |Wsread VO B
i 1. %64 sys preaded) || N e i
with 2 x 256 SVE each I :l‘ -l ol TEEET ‘I |. e “. |
dosyseall 64 A asortssip |
I, I | 1|1 (enliy:SYSCALL 64 after-hwirame i | I GsoEssu— | 0
) 1098 | @S hesh. [|]]) |_libc pread [1 he. | OSSR]
4 x HBM 4 x DDR5 interfaces I I=I L r——— T / | tuplesort_sort memtuples i || :
terAlloc smgrrea dumptuples
] e - puttuple_common \
1 111]] 181 FunctionCall2Coll- - ReadBufferéxtended L])
11 181 it i
[T i
|| 1II00 postgres sl

https://github.com/Sednai/pgvector/tree/AERO

Vector Search

pgvector hack (ivfflat)

Implementation

Own Postgres background process with task queue in shared memory.

BackgroundWorker worker;
BackgroundWorkerHandle *handle;
BgwHandleStatus status;

pid_t pid;

memset(&worker, 0, sizeof(worker));

worker.bgw_flags = BGWORKER_SHMEM_ACCESS | BGWORKER_BACKEND_DATABASE_CONNECTION;

worker.bgw_start_time = BgWorkerStart_RecoveryFinished;

worker.bgw_restart_time = BGW_NEVER_RESTART; // Time in s to restart if crash. Use BGW_NEVER_RESTART for no restart;

char* WORKER_LIB = GetConfigOption("ivfflat.lib",true,true);

sprintf(worker.bgw_library_name, WORKER_LIB);
sprintf(worker.bgw_function_name, "pgv_gpuworker_main");

snprintf(worker.bgw_name, BGW_MAXLEN, "%s",buf);
worker.bgw_notify_pid = MyProcPid;

if (!RegisterDynamicBackgroundWorker(&worker, &handle))
elog(ERROR, "Could not register background worker");

status = WaitForBackgroundWorkerStartup(handle, &pid);

Vector Search

pgvector hack (ivfflat)

Implementation
Own Postgres background process with task queue in shared memory.

Re-routing the index tuple scan as task to background worker during scan:

/*

* Fetch the next tuple in the given scan

*/

bool

ivfflatgettuple(IndexScanDesc scan, ScanDirection dir)

/*
Exec task
—_—> */
dlist_node* dnode = dlist_pop_head_node(&worker_head->exec_list);
own process . .
worker_exec_entry* entry = dlist_container(worker_exec_entry, node, dnode);

SpinLockRelease(&worker_head->lock);
load_index(entry->nodeid, entry->tupdesc, entry->usetriangle);

/| Compute
if(!entry->usegpu) {
entry->returns = exec_query_cpu(entry, worker_head);

}

else

Vector Search

pgvector hack (ivfflat)

Implementation

For an indexed table, we store the index vectors and corresponding location info
(ltemPointerData) as raw native arrays in Non-Postgres memory.

(The data will be persistent over the lifetime of the background process. We have not implemented active memory management yet. Background process
will crash if you run out of memory !)

/*

* Fetch the next tuple in the given scan

*/

bool

ivfflatgettuple(IndexScanDesc scan, ScanDirection dir)

/*
Exec task
—_—> */
dlist_node* dnode = dlist_pop_head_node(&worker_head->exec_list);
own process . .
worker_exec_entry* entry = dlist_container(worker_exec_entry, node, dnode);

SpinLockRelease(&worker_head->lock);
load_index(entry->nodeid, entry->tupdesc, entry->usetriangle); (:-F-k

/| Compute
if(!entry->usegpu) {
entry->returns = exec_query_cpu(entry, worker_head);

}

else

Vector Search

pgvector hack (ivfflat)

Implementation

For a query point (vector), we compute its distance against all index vectors and
distance sort. Location infos are returned to the user process.

(More precisely, the corresponding page number and IltemPointerData are returned.)

/*

* Fetch the next tuple in the given scan

*/

bool

ivfflatgettuple(IndexScanDesc scan, ScanDirection dir)

/*
Exec task
—_—> */
dlist_node* dnode = dlist_pop_head_node(&worker_head->exec_list);
own process . .
worker_exec_entry* entry = dlist_container(worker_exec_entry, node, dnode);

SpinLockRelease(&worker_head->lock);

load_index(entry->nodeid, entry->tupdesc, entry->usetriangle);

/| Compute
A Fllanterir ~ismmammi)\ [
tf(tentry susegpu) |
entry->returns = exec_query_cpu(entry, worker_head); (:-F-F

1
J

else

Vector Search

pgvector hack (ivfflat)

What about performance ?
GIST-960 dataset
Note for ivfflat (bgw cpu):
- No special tricks
- No parallelisation

- No manual vector instructions
- No HBM memory

Query:

S

queries/

190 A

GIST-960, test set queries

1804 °

170 4
160
150 A
140
130

1204 .

—
—
o

H
88833383

=N
oo o
L

ivfflat (standard)
ivfflat (bgw-cpu)
hnsw

Vector Search

pgvector hack (ivfflat)

What about performance ?
GIST-960 dataset
Note for ivfflat (bgw cpu):
- No special tricks
- No parallelisation

- No manual vector instructions
- No HBM memory

Query:

queries/s

=
OOP—‘I\JWJ}MG\\IW\DO
T T TR TR R N TR TR N

GIST-960, test set queries

ivfflat (standard)
ivfflat (bgw-cpu)

T T T T T T T T T T
.80 0.82 084 086 088 090 092 094 096 098 1..00
recall

PN

.‘

N 4
-

Vector Search S
sednaq
pgvector hack (ivfflat)

What about performance ?

GIST-960 dataset

Note for ivfflat (bgw cpu):

- No special tricks

- No parallelisation

- No manual vector instructions
- No HBM memory

-
e —

g
g
=

Vector Search

pgvector hack (ivfflat)

What about performance ?

GIST-960 dataset

Note for ivfflat (bgw cpu):

No special tricks
No parallelisation
No manual vector instructions
No HBM memory

Vector Search o

pgvector hack (ivfflat)

Can we do better ?

Since we have already a setup to keep index persistent in Non-Postgres memory, we
can easily go one step further and offload the index and compute to a !

— Compute of distances and sort on device.

Return only sorted index ids from device
(Mapping to location info on CPU)

Vector Search

pgvector hack (ivfflat)

Can we do better ?

Since we have already a setup to keep index persistent in Non-Postgres memory, we
can easily go one step further and offload the index and compute to a !

— Compute of distances and sort on device

Return only sorted index ids from device
(Mapping to location info on CPU)

Recall: We have 6x A100 GPUs in our distributed Postgres database

—

For FP32 vectors of dim 100 that is enough to keep > 1B index points persistent

sednai

... GPU ACCELERATED VECTOR SEARCH ...

Vector Search

pgvector hack (ivfflat)

Implementation

For an indexed table, we store now the index vectors on a device.

(The data will be persistent over the lifetime of the background process. We have not implemented active memory management yet. Background process
will crash if you run out of memory !)

/*

* Fetch the next tuple in the given scan

*/

bool

ivfflatgettuple(IndexScanDesc scan, ScanDirection dir)

/*
Exec task
—_—> */
dlist_node* dnode = dlist_pop_head_node(&worker_head->exec_list);
own process . .
worker_exec_entry* entry = dlist_container(worker_exec_entry, node, dnode);

SpinLockRelease(&worker_head->lock);

load_index(entry->nodeid, entry->tupdesc, entry->usetriangle); C++ / CU DA
// compute (essentially one big cudaMemcpy)

if(!entry->usegpu) {
entry->returns = exec_query_cpu(entry, worker_head);

}

else

Vector Search

pgvector hack (ivfflat)

Implementation

For a query point (vector), we compute its distance against all index vectors and
distance sort on device. Only ordered index ids are returned from GPU to CPU process.

/*

* Fetch the next tuple in the given scan

*/

bool

ivfflatgettuple(IndexScanDesc scan, ScanDirection dir)

—_— > load_index(entry->nodeid, entry->tupdesc, entry->usetriangle);
own process
// Compute
if(lentry->usegpu) {
entry->returns = exec_query_cpu(entry, worker_head);
1
else
#1fdef GPU

entry->returns = exec_guery_gpu(entry, worker_head); (:_+._+. / (:lJ [)/\
(custom kernels)

#else
entry->returns = exec_query_cpu(entry, worker_head);

#endif

Vector Search

pgvector hack (ivfflat)

What about performance ?

GIST-960 dataset

Query:

GIST-960, test set queries GIST-960, test set queries
240 A 100
o . .t .- 95 « ivfflat (bgw-gpu)
220 4 - T e, ._..._. w . e - . 90 » ivfflat (bgw-cpu)
. ° o 85 -
200 A . | A P B . .
R 80 .ot e .t B g
180 1 75 4 .
160 707
1 .
65
.
140 4 60
r O .o B 55
% 120 A TTACLA A '. . % 50 .,
. .
S LA I - S 45 A .
100 - : o e
o - . S, o, c... J- - . o 40 4
80 . """.""N-.-.q.'. 35 .
60 L] . 30 |
J 25 4
L
- 20 -
40 » ivfflat (bgw-gpu) ° . 154 .
20 A . i\.rfﬂat[bgw-cpu) - . ., . - . 10 J- .n....q...'....P....'....'........-...,...c.....‘.......‘
ot %ay L) . .
ol hnsw ..,'.- Rl onlgue® "-M.-’ 5 * ..,
T T T T T T T T T T T 0 T T T T T T T T T T
00 01 02 03 04 05 06 07 08 09 L0 0.80 0.82 0.84 0.86 0.88 090 0.92 0.94 0.96 098 100

recall recall

2fUBITECH [, PIERER 4

oneAPI @

NEE

Aero aims to complement the efforts of the EU Processor Initiative (EPI) project by
developing the open-source software ecosystem required to not only improve the

efficiency of the EPI hardware but also accelerate and ease the processor’s integration
into the

Heterogeneous hardware

PROBLEM: Divers set of accelerators from different vendors (NVIDIA, AMD, INTEL,...)

SIPEARL nnovaTian @FORTH _ W vl Open Sywens (HE) UNVERSITE @

RedHat UNIVERSITA DI P1sA ' DE GENEVE Sedn(]\.

MANCHESTER

C codeplay’

:UBITECH (spe/RL PIERER @ @FORTH . G wue open syuems (85 UNVERSTE @)

oneAPI @

NERE

Aero aims to complement the efforts of the EU Processor Initiative (EPI) project by
developing the open-source software ecosystem required to not only improve the

efficiency of the EPI hardware but also accelerate and ease the processor’s integration
into the

Heterogeneous hardware

Open, cross-industry, standards-based, unified, multi-architecture,
multi-vendor programming model, adopted by Intel.

fasads.

oneAPlI

MANCHESTER

C codeplay’

Red Hat . UNIVERSITA DI PISA ! DE GENEVE Sedﬂ(]\.

oneAPI @

NEE

Aero aims to complement the efforts of the EU Processor Initiative (EPI) project by
developing the open-source software ecosystem required to not only improve the

efficiency of the EPI hardware but also accelerate and ease the processor’s integration
into the

Heterogeneous hardware

oS Open, cross-industry, standards-based, unified, multi-architecture,
*2e multi-vendor programming model, adopted by Intel.
%
%
Intel oneAPI base toolkit plugins for NVIDIA and AMD
oneAPI .\
WMUBITECH (IsPRL fERER ., @ @FORTH . % Guopnswe @hivert @ (NG

C codeplay”

RedHat " UnIvERsITA DI P1sA ' DE GENEVE Sedn(]\.

Vector Search

pgvector hack (ivfflat)

Implementation

For a query point (vector), we compute its distance against all index vectors and
distance sort on device. Only ordered index ids are returned from GPU to CPU process.

/*

* Fetch the next tuple in the given scan

*/

bool

ivfflatgettuple(IndexScanDesc scan, ScanDirection dir)

—_— > load_index(entry->nodeid, entry->tupdesc, entry->usetriangle);
own process
// Compute
if(lentry->usegpu) {
entry->returns = exec_query_cpu(entry, worker_head);
1
else
#1fdef GPU

entry->returns = exec_guery_gpu(entry, worker_head); C++ / oneAPl
(custom kernels)

#else
entry->returns = exec_query_cpu(entry, worker_head);

#endif

Vector Search

pgvector hack (ivfflat)

Implementation

For a query point (vector), we compute its distance against all index vectors and
distance sort on device. Only ordered index ids are returned from GPU to CPU process.

void calc_squared_euclidean_distances(float* M, float* V, sort_item* C, int* p, int N, int L, int probe) -
Q->parallel_for(range<1>(N),

[=]1(id<1> k){
int pos = *p;

OTM
& float tmp = 0;
e for(int 1 = 0; 1 < L; 1++) {
% tmp += (M[L*k#i] - V[i])*(M[L*k+i] - V[i]);
(e }

OneAPI C[pos+k].distance = tmp;

C[pos+k].probe = probe;
C[pos+k].pos = k;

s

Q->wait();

Vector Search

pgvector hack (ivfflat)

What about performance ?
GIST-960 dataset

Query:

GIST-960, test set queries

With OpenCL CPU oneAPI backend

GIST-960, test set queries

60
+ ivfflat (bgw-cpu-opencl) + ivfflat (bgw-cpu-opencl)
180 1 « ivfflat (bgw-cpu) 531 « ivfflat (bgw-cpu)
.
160 4 . s hnsw 50
S .. 45 4
1401 *.. .. T .
* L]
ol::'. - L .. - 40 1
120 4 AT I ST g
. “t Ve e 35
o R A A #
ul . ®s e %
£ 100 AR 85,
] . .]
= - =
& 80 . & 251
60 20
[P
40 - o, 15
w, | e I TR P [L
T, 10
20 . . .
N e g 5
04
T T T T T T T T T T T 0 T T T T T T T T T T
00 01 02 03 04 05 06 07 0.9 1.0 0.80 082 084 086 088 090 092 094 09 098 100

recall

recall

Vector Search

pgvector hack (ivfflat)

What about performance ?
GIST-960 dataset

Query:

GIST-960, test set queries

With Nvidia GPU oneAPI backend

280 4

200

test set queries

- . . . 190 4 « viflat (bgw-gpu-oneAPl)
2604 o " o el e , .. 180 - .
o0 gt . L LTSy . » ivfflat (bgw-gpu-cuda)
240 4 . e . 170 4
o, . . " & .’ LI 160
220 et g ey ML T 150
200 A . 140 1
180 - 130 4
| . 1204 .
2 160 « ivfflat (bgw-gpu-oneAPI) & 110 . . .t . . .
g 140 . ivfflat (bgw-gpu—cuda} . g 100 47 Messssas [P e .-.
] e,] |
31201 = bhnsw . ga'm z % . .
- LN P10 I ZS-. N U TS, L. SRR SR TR e
100 - . s 70 1 ¥ . .
..y o - * .
80 4 ettt 60 1 .
60 - " 501 te ..
40 1 . Bt il .
204 . * ; 204
° ..-u-..."...-""-"""" -A"‘""‘“"’.‘:—o’" -~ 10
0 . 0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.80 0.82 084 086 088 090 092 094 096 098 100

recall

recall

Vector Search

pgvector hack (ivfflat)

What about performance ?

GIST-960 dataset

Query:

With Nvidia GPU oneAP

GIST-960, test set queries

sednai

Seems my CUDA kernels could be improved ...

ackend

GIST-960, test set queries

280
260 o T S el e .. el
o st A N e e
240 - . t e -
. . . ® ..
2207 '.".“'"".-.--"-." e e it
200 .
180
a 1601 . jvfflat (bgw-gpu-oneAPI)
21404 . ivfflat (bgw-gpu-cuda)
qé_ 1204 =+ hnsw
100 A . 70 4
80 T Sttt , 60
60 - % 50 -
40 . - o]
204 . * ; 204
° ...-u-...". o -A"‘""‘“"’.‘:—o’" -~ 10
0 -
T T T T T T T T T T T 0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

recall

+ Iviflat (bgw-gpu-oneAPl)
ivfflat (bgw-gpu-cuda)

T T T T T T T T T T
0.80 082 084 086 088 090 092 094 096 098 1.00

recall

queries/s

Vector Search

pgvector hack (ivfflat)

What about performance ?
GIST-960 dataset
Query:

Laptop GPU

GIST-960, test set queries

280 -
L] - * *
| .~ .,
2601 ¢ L e M et
240 A * e -
. . .® .. -
2201 i et e s i
200 - : .
180
1601 . ivfflat (bgw-gpu-oneAPIl)
1401 =« ivfflat (bgw-gpu-cuda) .
1204 = hnsw . ga'm
u’.o.- .
100 . o’
. -
80 P e,
60 - %
40 1 . .-..
20 . . s
* ...'d-...”. St -M""'%"'o"'.-"" -~
0 -
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
recall

queries/s

Laptop CPU

GIST-960, test set queries

queries/s

. » ivfflat (bgw-cpu-opencl)
180 1 « ivfflat (bgw-cpu)
P * « hnsw
140 1
120
100 A .
80 1 -
.
60 . s
2 o
40 . b .'0’0._'5.
‘f.-.
20 . ., *e, e T ®
PR o MM
01 <
T T T T T T T T T T T
00 01 02 03 04 05 06 07 08 09 1.0
recall

AMD EPYC CPU [64 threads]

GIST-960, test set queries

.
1804 * ®Cete, M e
. L T RO R
160 et ot e
. . w . .
140 4 N . * *
.
L .
120 | ~ . .
100 1 Y L.
N '.o.i L T .t ° ?e
e . L) - -] - -
80 - T wmee L. " aeem .
*. . . N
60 - “ vy o Sowe,
.
40 .
.
209, jvfflat (bgw-cpu-opencl) .o ® .
) . ot e
0 - ivfflat (bgw-cpu) .,
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

sednai

... A SPECIAL CASE ...

Vector Search

pgvector

What we want:

Fast way to retrieve (most) points up to a max distance from a query point.

Vector Search

pgvector

What we want:

Fast way to retrieve (most) points up to a max distance from a query point.

Why ?

Core ingredient to density based clustering algorithms.

Simplified: Xz‘r
o O
e 5 8 o
OC o
O

\4

X1

Vector Search

pgvector

What we want:

Fast way to retrieve (most) points up to a max distance from a query point.

Why ?
Core ingredient to density based clustering algorithms.

Simplified: o 1

epsilon

O

X1

Vector Search

pgvector

What we want:

Fast way to retrieve (most) points up to a max distance from a query point.
Why ?

Core ingredient to density based clustering algorithms.

Simplified: o 1

\4

X1

Vector Search

pgvector

What we want:

Fast way to retrieve (most) points up to a max distance from a query point.
Why ?

Core ingredient to density based clustering algorithms.

. o

[
>

X1

Simplified: o 1

Vector Search

pgvector

What we want:

Fast way to retrieve (most) points up to a max distance from a query point.
Why ?

Core ingredient to density based clustering algorithms.

Simplified: o 1

\4

X1

Vector Search

pgvector

What we want:

Fast way to retrieve (most) points up to a max distance from a query point.
Why ?
Core ingredient to density based clustering algorithms.

Simplified: o 1

0 % ;

Nt

O

X1

Vector Search

pgvector

What we want:

Fast way to retrieve (most) points up to a max distance from a query point.
Why ?

Core ingredient to density based clustering algorithms.

Simplified: o 1

\4

X1

Vector Search

pgvector

What we want:

Fast way to retrieve (most) points up to a max distance from a query point.
Why ?

Core ingredient to density based clustering algorithms.

Simplified: o 1

\4

X1

Vector Search

pgvector

What we want:

Fast way to retrieve (most) points up to a max distance from a query point.
Why ?

Core ingredient to density based clustering algorithms.

Simplified: o 1

\4

X1

Vector Search

pgvector

What we want:

Fast way to retrieve (most) points up to a max distance from a query point.

Why ?

Core ingredient to density based clustering algorithms.

Simplified: Xz‘r
o ©
O o : o
® o
e

\4

X1

Vector Search L)

pgvector

What we want:

Fast way to retrieve (most) points up to a max distance from a query point.

Get rows within a certain distance
SELECT * FROM items WHERE embedding <-> '[3,1,2]' < 5;

Note: Combine with orber By and LimiT to use an index
(From pgvector github README.md, 2025)

Vector Search L)

pgvector

What we want:

Fast way to retrieve (most) points up to a max distance from a query point.

Get rows within a certain distance /

SELECT * FROM items WHERE embedding <-> '[3,1,2]' < 5;

Note: Combine with| oroer By and LimiT to use an index
(From pgvector github README.md, 2025)

Vector Search L)

pgvector

What we want:

Fast way to retrieve (most) points up to a max distance from a query point.

Get rows within a certain distance
SELECT * FROM items WHERE embedding <-> '[3,1,2]' < 5;

Note: Combine with| oroer By and LimiT to use an index
(From pgvector github README.md, 2025)

PROBLEM: Very very slow ...

Vector Search

pgvector
Why ?
Let us look with GDB what actually happens for a query of type

select * from table where embedding <-> ‘[...]" < 10 order by embedding <-> ‘[...]" limit 10000

by setting a breakpoint at ivfscan.c:iviflatgettuple :

U O

(gdb) break ivfscan.c:353

Breakpoint 1 at @x7c106d843e7b: file src/ivfscan.c, line 358.
(gdb) ¢

Continuing.

Breakpoint 1, ivfflatgettuple (scan=0x60700e9406f8, dir=ForwardScanDirection) at src/ivfscan.c:360

360 if (so->first)

(gdb) p* scan

$1 = {heapRelation = 0x7c106d7925e8, indexRelation = @x7c106d796818, xs_snapshot = 0x60700e8a8a68, numberOfKeys = @, numberOfOrderBys = 1, keyData = @x0,
orderByData = 0x60700e940808, xs_want_itup = false, xs_temp_snap = false, kill_prior_tuple = false, ignore_killed_tuples = true, xactStartedInRecovery = false,
opaque = Ox60700e940898, xs_itup = 0x0, xs_itupdesc = Ox@, xs_hitup = Ox0, xs_hitupdesc = 0x0, xs_heaptid = {ip_blkid = {bi_hi = @, bi_lo = 8680}, ip_posid = 4},
xs_heap_continue = false, xs_heapfetch = @x60700e94089a8, xs_recheck = false, xs_orderbyvals = @x0, xs_orderbynulls = 0x0, xs_recheckorderby = false,
parallel_scan = 0x0}

(gdb) I

Vector Search

pgvector
Why ?
Let us look with GDB what actually happens for a query of type

select * from table where embedding <-> ‘[...]" < 10 order by embedding <-> ‘[...]" limit 10000

by setting a breakpoint at ivfscan.c:iviflatgettuple :

M g e e iy e e e

(gdb) break ivfscan.c:353

Breakpoint 1 at @x7c106d843e7b: file src/ivfscan.c, line 358.
(gdb) ¢

Continuing.

Breakpoint 1, ivfflatgettuple (scan=0x60700e9406f8, dir=ForwardScanDirection) at src/ivfscan.c:360

360 if (so->first)
(gdb) p*
$1 = {hez ion = Ox7c106d7925e8, indexRelation = @x7c106d796818, xs_snapshot = Ox60700e8a8a68, numberOfKeys = 0, |numberOfOrderBys = 1, keyData = 0x0,
orderByData = 0x60700e940808, xs_want_itup = false, xs_temp_snap = false, kill_prior_tuple = false; —d —tuples = true, xactStartedInRecovery = false,
60700940898, xs_itup = 0x0, xs_itupdesc = Ox@, xs_hitup = Ox@, xs_hitupdesc = 0x@, xs_heaptid = {ip_blkid = {bi_hi = @, bi_lo = 8680}, ip_posid = 4},

inue = false, xs_heapfetch = Ox60700e9409a8, xs_recheck = false, xs_orderbyvals = 0x0, xs_orderbynulls = @x0, xs_recheckorderby = false,

. \

Indexscanbese No scan keys are pushed down !

Vector Search

pgvector

ExeclnitBuildScanKeys: quals are Null

Why no scan keys ? /

We have to dig deeper iss NumScanKeys = 0 already in IndexScanState

(g

#1
#1

db) bt

ivfflatgettuple (scan =0x60700e9406f8, dir=ForwardScanDirection) at src/w

0x000060700c44b319
0x000060700c44b529

0x000060700c6b234d 1

0xP00A60700c68ad18
at execScan.c:132
0x000060700c68adbd
0x000E60700c6b2b73
0x000060700c686Ccce
0xPEOA60700Cc6b5207
0x000060700c6b53F7
0 OxPEO60700c686cCe
1 0x000060700c67b20a
2 0x000060700c67dacs

in index_getnext_ tld (scan=0x60700e94068, dlrec on=ForwardScanDirection) at indexam.c:575
in index _getnext_ slot (scan= @x6@700e94@6f8 {rection= Forward5canDLrect10n slot=0x60700e9586d0) at indexam.c:667

in ExecScanFetch (node=@x6@7@@e' 130, accesthd=@x6@7@@c6b2158 <IndexNextwtthReorder>, recheckMtd=0x60700c6b2675 <IndexRechecks>)

10700e958430, accessMtd=0x60700c6b2158 <IndexNextWithReorder>, recheckMtd=0x60700c6b2675 <IndexRecheck>) at execScan.c:198
te= Gx60760e958430) at nodeIndexscan.c:533

node=0x60700e958430) at execProcnode.c:464

in ExecProcNode (node 0x60700e958430) at ../../../src/include/executor/executor.h:262

in ExecLimit (pstate=0x60700e958140) at nodelLimit.c:96

in ExecProcNodeFirst (node=0x60700e958140) at execProcnode.c:464

in ExecProcNode (node=0x60700e958140) at ../../../src/include/executor/executor.h:262

in ExecutePlan (queryDesc=0x60700e965c68, operation=CMD_SELECT, sendTuples=true, numberTuples=0, direction=ForwardScanDirection,

dest=0x60700e9531e0) at execMain.c:1640

3 0x000060700c67b71c
4 0x000060700c67b621

=> Already

in standard_ExecutorRun (queryDesc=0x60700e965c68, direction=ForwardScanDirection, count=0, execute_once=false) at execMain.c:362
in ExecutorRun (queryDesc=0x60700e965c68, direction=ForwardScanDirection, count=0, execute_once=false) at execMain.c:311

#15 Ox000060700c8b9b66 in PortalRunSelect (portal=0x60700e8f4328, forward=true, count=0, dest=0x60700e9531e0) at pquery.c:922
#16 Ox000060700c8b97d1 in PortalRun (portal=0x60700e8f4328, count=9223372036854775807, isTopLevel=true, run_once=true, dest=0x60700e9531e0, altdest=0x60700e9531e0,

before execution level no scan keys !

Vector Search -

pgvector [

* indxpath.c
2 * Routines to determine which indexes are usable for scanning a

Why no Scan keys - * given relation, and create Paths accordingly.

*
. * Portions Copyright (c) 1996-2022, PostgreSQL Global Development Group

We have tO dlg deeper “es * Portions Copyright (c) 1994, Regents of the University of California
*
*

Let us look into : * IDENTIFICATION
* src/backend/optimizer/path/indxpath.c
*

2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225

/u\'

*

match_clause_to_indexcol()
Determine whether a restriction clause matches a column of an index,
and if so, build an IndexClause node describing the details.

To match an index normally, an operator clause:

(1) must be in the form (indexkey op const) or (const op indexkey);
and

(2) must contain an operator which is in the index's operator family
for this column; and

(3) must match the collation of the index, if collation is relevant.

Vector Search

pgvector

Why no scan keys ?

We have to dig deeper ...

Let us look into

2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225

/*

* match_clause_to_indexcol()

* Determine whether a restriction clause matches a column of an index,
* and if so, build an IndexClause node describing the details.

*

* To match an index normally, an operator clause:

*

* (1) must be in the form (indexkey op const) or (const op indexkey);
* and

* (2) must contain an operator which is in the index's operator family
* for this column; and

* (3) must match the collation of the index, if collation is relevant.

embedding <-> ‘[...]’ < 10

—» Indexkey can not be matched !

op(indexkey, ’[..."]) op const

1')
Vector Search ‘

pgvector

Why no scan keys ?

We have to dig deeper ...
. embedding <-> ‘[...]’ < 10

Let us look into

—» Indexkey can not be matched !

. . op(indexkey, ’[..."]) op const
=> Looks like Postgres enhancement required ! P Y P

BUT: May take ages to get upstream ...

Vector Search

pagvector hack

Quicker to production:

Let us introduce a new operator, thereby hacking the

New operator for wiere clause in index scan:
vector <!> vector_adv

with
vector_adv = (vector,int,float)

int specifies the filter operator and fleat the condition value

>=

@ =N

-1: <
-2: <=
-100: no filter

(At the time being, only for euclidean metric)

into the ORDER BY:

o

|

|

Vector Search

pgvector hack

Quicker to production:

Let us introduce a new operator, thereby hacking the into the ORDER BY:

Query:
embedding <!> (‘[...]’, -1, 10.0) 10000

Vector Search

pgvector hack

Quicker to production:

Let us introduce a new operator, thereby hacking the into the ORDER BY:

Query:
embedding <!> (‘[...]’, -1, 10.0) 10000

d

Vector Search

pgvector

What about performance ?

- 2M row Gaia dataset, 79 float8 features

- 40 ivfflat clusters, ivfflat.probes = 20

- Retrieve points up to a max distance from a query point (sparse return)
- After warmup

Original pgvector

Limit (cost=0.00..9416.48 rows=10000 width=16) (actual time=113.688..563.274 rows=2 loops=1)
-> Index Scan using lorenzo_attrs_idx on lorenzo (cost=0.00..569379.89 rows=604663 width=16) (actual time=113.685..563.269 rows=2 loops=1)

Order By: (attrs <-> '[-0.36719987,0.8524608,-0.5427666,-1.6615063,1.1010165,0.06038815,-0.8972259,-1.1181297,0.23769811,1.6662519,-1.}
473,-0.042955805,0.17839357,0.08050123,0.27791676,-0.425645,0.11280374,0.84778684,0.08167486,1.8496727,0.8007245,0.5793525,-0.5038844,0.2299031¢
,0.12975255,-1.9553635,0.9473572,-2.2433414,-0.30360684,0.33857238,-0.21312521,2.3237233,-0.060708717,0.339421,-2.0196183,-0.35616732,1.8636712,
749731,-1.5635711,-1.2368783,-0.96010184,-0.6722383,0.8274576,-0.7714504,-0.16363333,-0.96023947,-0.16326201,-1.0754527,-0.6974341,-2.3611114, -1
03672114,1.2685906,-0.22232309,-0.17129573,-0.30436236,-1.1221358,0.6857615, -0.60302067,0.22385728,-1.0727525,-1.6519747,-0.9824103,-1. 5251932, -
1835048,-2.293227,1.9016955, -2.8030064, -0.045054823,-0.14567287] ' : :vector)

Filter: ((attrs <-> '[-0.36719987,0.8524608,-0.5427666,-1.6615063,1.1010165,0.06038815,-0.8972259,-1.1181297,0.23769811,1.6662519,-1.5!
73,-0.042955805,0.17839357,0.08050123,0.27791676,-0.425645,0.11280374,0.84778684,0.08167486,1.8496727,0.8007245,0.5793525,-0.5038844,0.22990316,
0.12975255,-1.9553635,0.9473572,-2.2433414,-0.30360684,0,33857238,-0.21312521,2.3237233,-0.060708717,0.339421,-2.0196183,-0.35616732,1.8636712,:
49731,-1.5635711,-1.2368783,-0.96010184,-0.6722383,0.8274576,-0.7714504,-0.16363333, -0.96023947,-0.16326201,-1.0754527,-0.6974341,-2.3611114,-1.
3672114,1.2685906,-0.22232309,-0.17129573,-0.30436236,-1.1221358,0.6857615, -0.60302067,0.22385728,-1.0727525,-1.6519747,-0.9824103,-1.5251932, -
835048,-2.293227,1.9016955, -2.8030064 , -0.045054823,-0.14567287] ' : :vector) < '6'::double precision)

Rows Removed by Filter: 578577

Planning Time: 0.204 ms
Execution Time: 563.326 ms
(7 rows)

pgv2=#

Vector Search

pgvector hack

What about performance ?

- 2M row Gaia dataset, 79 float8 features

- 40 ivfflat clusters, ivfflat.probes = 20

- Retrieve points up to a max distance from a query point (sparse return)
- After warmup

BGW with filter on CPU

Limit (cost=0.00..3105.50 rows=10000 width=16) (actual time=18.928..18.932 rows=1 loops=1)
-> Index Scan using lorenzo_attrs_idx on lorenzo (cost=0.00..563333.26 rows=1813988 width=16) (actual time=18.925..18.927 rows=1 loops=1)
Order By: (attrs <!> "("[-0.36719987,0.8524608,-0.5427666,-1.6615063,1.1010165,0.06038815,-0.8972259,-1.1181297,0.23769811,1.6662519, -1

18473, -0.042955805,0.17839357,0.08050123,0.27791676,-0.425645,0.11280374,0.84778684,0.08167486,1.8496727,0.8007245,0.5793525,-0.5038844,0.22990:
75,0.12975255,-1.9553635,0.9473572,-2.2433414,-0.30360684,0.33857238,-0.21312521,2.3237233,-0.060708717,0.339421,-2.0196183,-0.35616732,1.863671
.0749731,-1.5635711,-1.2368783,-0.96010184,-0.6722383,0.8274576,-0.7714504,-0.16363333,-0.96023947,-0.16326201,-1.0754527,-0.6974341,-2.3611114,
0.03672114,1.2685906,-0.22232309,-0.17129573,-0.30436236,-1.1221358,0.6857615, -0.60302067,0.22385728,-1.0727525,-1.6519747,-0.9824103,-1.525193:
1.1835048,-2.293227,1.9016955,-2.8030064, -0.045054823, -0.14567287]",-1,4) ' : :vector_adv)

Planning Time: 0.188 ms

Execution Time: 18.980 ms

(5 rows)

pavz=#

Vector Search

pgvector hack

What about performance ?

- 2M row Gaia dataset, 79 float8 features

- 40 ivfflat clusters, ivfflat.probes = 20

- Retrieve points up to a max distance from a query point (sparse return)
- After warmup

BGW with filter on GPU

Limit (cost=0.00..3105.50 rows=10000 width=16) (actual time=2.482..2.488 rows=1 loops=1)
-> Index Scan using lorenzo_attrs_idx on lorenzo (cost=0.00..563333.26 rows=1813988 width=16) (actual time=2.478..2.482 rows=1 loops=1)

Order By: (attrs <!> '("[-0.36719987,0.8524608,-0.5427666,-1.6615063,1.1010165,0.06038815,-0.8972259,-1.1181297,0.23769811,1.6662519, -!

18473,-0.042955805,0.17839357,0.08050123,0.27791676,-0.425645,0.11280374,0.84778684,0.08167486,1.8496727,0.8007245,0.5793525,-0.5038844,0.22990:

75,0.12975255,-1.9553635,0.9473572,-2.2433414,-0.30360684,0.33857238,-0.21312521,2.3237233,-0.060708717,0.339421,-2.0196183,-0.35616732,1.86367!

.0749731,-1.5635711,-1.2368783,-0.96010184,-0.6722383,0.8274576,-0.7714504,-0.16363333,-0.96023947,-0.16326201,-1.0754527,-0.6974341,-2.3611114,

0.03672114,1.2685906,-0.22232309,-0.17129573,-0.30436236,-1.1221358,0.6857615,-0.60302067,0.22385728,-1.0727525,-1.6519747,-0.9824103,-1.525193:

1.1835048,-2.293227,1.9016955, -2.8030064, -0.045054823,-0.14567287]",-1,4) " : :vector_adv)

Planning Time: 0.199 ms

Execution Time: 2.548 ms

(5 rows)

pav2=# i

Vector Search

pgvector hack

What about performance ?

- 2M row Gaia dataset, 79 float8 features

- 40 ivfflat clusters, ivfflat.probes = 20

- Retrieve points up to a max distance from a query point (sparse return)
- After warmup

BGW with filter on GPU

Limit (cost=0.00..3105.50 rows=10000 width=16) (actual time=2.482..2.488 rows=1 loops=1)
-> Index Scan using lorenzo_attrs_idx on lorenzo (cost=0.00..563333.26 rows=1813988 width=16) (actual time=2.478..2.482 rows=1 loops=1)

Order By: (attrs <!> '("[-0.36719987,0.8524608,-0.5427666,-1.6615063,1.1010165,0.06038815,-0.8972259,-1.1181297,0.23769811,1.6662519, -!

18473,-0.042955805,0.17839357,0.08050123,0.27791676,-0.425645,0.11280374,0.84778684,0.08167486,1.8496727,0.8007245,0.5793525,-0.5038844,0.22990:

75,0.12975255,-1.9553635,0.9473572,-2.2433414,-0.30360684,0.33857238,-0.21312521,2.3237233,-0.060708717,0.339421,-2.0196183,-0.35616732,1.86367!

.0749731,-1.5635711,-1.2368783,-0.96010184,-0.6722383,0.8274576,-0.7714504,-0.16363333,-0.96023947,-0.16326201,-1.0754527,-0.6974341,-2.3611114,

0.03672114,1.2685906,-0.22232309,-0.17129573,-0.30436236,-1.1221358,0.6857615,-0.60302067,0.22385728,-1.0727525,-1.6519747,-0.9824103,-1.525193:

1.1835048,-2.293227,1.9016955, -2.8030064, -0.045054823,-0.14567287]",-1,4) " : :vector_adv)

Planning Time: 0.199 ms

Execution Time: 2.548 ms

(5 rows)

pav2=# i

=> 200x speedup !

Vector Search

pagvector hack

General remarks:

- No active memory management
(memory freed only upon killing the worker)

- Enough shared memory needs to be reserved for number of expected returns
- As more sparse the return, as better will be the speedup

Vector Search

pagvector hack

General remarks:

- No active memory management
(memory freed only upon killing the worker)
- Enough shared memory needs to be reserved for number of expected returns

- As more sparse the return, as better will be the speedup

Can we do more ?
- Improvements of code (GPU kernels) are possible.

- Faster initial loading via Nvidia GPUDirect (NVMe <-> GPU DMA)

- Product quantization

- For significant performance improvement, more vectorization ...
(for instance, to query for several points at once)

sednai

... OUTLOOK ...

BEUBITECH ((USPERL DIERER @ @FORTH . & \Gwei opensyuenms (@) UNVERSTE| @

Intro

NEE

Aero aims to complement the efforts of the EU Processor Initiative (EPI) project by

developing the open-source software ecosystem required to not only improve the

efficiency of the EPI hardware but also accelerate and ease the processor’s integration

into the cloud.

Intertwined Gaia+SED pilots:

Process efficiently constantly increasing volumes of data.

—

Enable GPU computations directly within the database

Hack to GPU accelerate a Postgres vector index

(WARNING: That was actually easy ...)

MANCHESTER

RedHat ’ DE GENEVE

UNIVERSITA DI PISA

sednai

C codeplay’

Outlook v
sednai
NEL2E
SED pilot:
- Enable GPU computations directly within the database
— Multi-faceted
- Adaptation of PG-Strom to distributed Postgres (XL/XC lineage)
[https://heterodb.github.io/pg-strom/]
(for GPU acceleration of general scans, aggregates and joins ...)
—» First milestone reached in modernizing XL/XC
(pushed XC to PGv15 with sufficient functionality)
fz HEUBITECH (C/SPEARL JUERER v Regat @FORTH _ @M XG) Wenal Open Syems () UNIVERSTE Segm‘ C codeplay’

https://heterodb.github.io/pg-strom/

... THANK YOU ...

Project funded by

*
* ** F u nded by U K Research 0 Schweizerische Eidgenossenschaft Federal Department of Economic Affairs,

Confédération suisse Education and Research EAER

* * %

Confederazione Svizzera State Secretariat for Education,

* 5 ** the European U n ion and Innovation Confederaziun svizra Research and Innovation SERI

Swiss Confederation
Funded by the European Union. Views and opinions are however those of the author(s) only and do not necessarily reflect those of the European Union or the
HaDEA. Neither the European Union nor the granting authority can be held responsible for them. Project number: 101092850.

AERO has also received funding from UKRI under grants no. 10048318 and 10048915, and the Swiss State Secretariat for Education, Research, and
Innovation.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111

