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Intro 

Aero aims to complement the efforts of the EU Processor Initiative (EPI) project by 
developing the open-source software ecosystem required to not only improve the 
efficiency of the EPI hardware but also accelerate and ease the processor’s integration 
into the cloud.

Target platform:  

European high-performance energy-efficient processor (ARM based), dedicated to high 
performance computing, and designed to work with third-party accelerators, see
[ https://sipearl.com/ ]
RHEA images kindly provided by SIPEARL

https://sipearl.com/
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Intro 

Aero aims to complement the efforts of the EU Processor Initiative (EPI) project by 
developing the open-source software ecosystem required to not only improve the 
efficiency of the EPI hardware but also accelerate and ease the processor’s integration 
into the cloud.

Objectives:  [ https://aero-project.eu/about/ ] 

- Managed Programming Languages
- Native Programming Languages & Runtimes
- OS, drivers & virtualization support
- State-of-the-art cloud deployments
- Hardware acceleration for performance & security
- Adoption of the EU cloud ecosystem

https://aero-project.eu/about/
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Gaia 

Gaia was a space based astronomy telescope of ESA operational 2014-2025. 

Gaia has made more than three trillion observations of two billion stars and other 
objects throughout our Milky Way galaxy and beyond, mapping their motions, 
luminosity, temperature and composition. 

Scientific objectives:

- First 3d map of our galaxy

- Insides on the origin and formation of our galaxy

- Detection of diverse variable phenomena

- Many more … see [ https://www.cosmos.esa.int/web/gaia/science ]

https://www.cosmos.esa.int/web/gaia/science
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Gaia has made more than three trillion observations of two billion stars and other 
objects throughout our Milky Way galaxy and beyond, mapping their motions, 
luminosity, temperature and composition. 

Data and compute challenge:

- Petabyte scale

- ~ 10 Billion photometric time series

- ~ 5 Billion spectra time series



Gaia 

Gaia was a space based astronomy telescope of ESA operational 2014-2025. 

Gaia has made more than three trillion observations of two billion stars and other 
objects throughout our Milky Way galaxy and beyond, mapping their motions, 
luminosity, temperature and composition. 

Variability analysis @ Geneva:

- All data stored in a distributed PostgreSQL database

- Compute where data is located, as far as possible. 

- PostgreSQL XC -> XL -> TBase lineage

- 6 nodes, each with 1 TB RAM and a Nvidia A100

Figure provided by K. Nienartowicz



Aero aims to complement the efforts of the EU Processor Initiative (EPI) project by 
developing the open-source software ecosystem required to not only improve the 
efficiency of the EPI hardware but also accelerate and ease the processor’s integration 
into the cloud.

Intertwined Gaia+SED pilots:

- Process efficiently constantly increasing volumes of data. 

- Enable GPU computations directly within the database

- Optimize data and compute pipeline for RHEA

Intro



Intro

Aero aims to complement the efforts of the EU Processor Initiative (EPI) project by 
developing the open-source software ecosystem required to not only improve the 
efficiency of the EPI hardware but also accelerate and ease the processor’s integration 
into the cloud.

Intertwined Gaia+SED pilots:

- Process efficiently constantly increasing volumes of data. 

- Enable GPU computations directly within the database

   Example: Hack to GPU accelerate a Postgres vector index
   
    (WARNING: This will be more technical …)
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Vector Search 
Motivation

Many data analysis algorithms require a nearest neighbour search in a D-dim space.
Often just referred to as Vector Search.
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Vector Search 
Motivation

Many data analysis algorithms require a nearest neighbour search in a D-dim space.
Often just referred to as Vector Search.

For a query point q :

What are its k nearest neighbors?

Note:

Growing interest due to ML / AI 
generated vector embeddings.

For instance: Document retrieval.
q
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Often just referred to as Vector Search.

For a query point q :

What are its k nearest neighbors?

What points are close by ?

q

epsilon
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Vector Search 
Motivation

Many data analysis algorithms require a nearest neighbour search in a D-dim space.
Often just referred to as Vector Search.

For a query point q :

What are its k nearest neighbors?

What points are close by ?

Note:

Of interest for classical unsupervised 
learning algorithms.

kNN, DBSCAN, ...

            Application to Gaia data

q

epsilon



Vector Search 
Motivation

Many data analysis algorithms require a nearest neighbour search in a D-dim space.
Often just referred to as Vector Search.

BUT:

Requires for each query point N distance calculations + ranking.
( With N the number of datapoints in the dataset )

How to scale to large datasets ?
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Several flavours exist, but IVFFLAT is the conceptually simplest algorithm.
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Vector Search 
IVFFLAT inference

Several flavours exist, but IVFFLAT is the conceptually simplest algorithm.

- Build vector index on dataset
via K-means clustering

- Index each datapoint to the
closest cluster (centroid)

- Evaluate query point q only 
against cluster members of 
the m nearest centroids.

Recall / Performance tradeoff

BUT: 
- Strongly depends on distribution of data
- Insert requires re-computation of clustering

m=3q
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A bit more conceptually challenging is HNSW. But nowadays preferred algorithm due to 
generally better recall / performance behavior.  
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Vector Search 
Approximate Nearest Neighbour search

A bit more conceptually challenging is HNSW. But nowadays preferred algorithm due to 
generally better recall / performance behavior.  
  

[ Malkov and Yashunin, 2016 ]

Hierarchical navigable small world

This talk: Mainly inference will be discussed



HNSW inference

A bit more conceptually challenging is HNSW. But nowadays preferred algorithm due to 
generally better recall / performance behavior.  

Vector Search 

HNSW

L0

L1

Multi-layered graph
(figure is simplified, usually many more layers) [ Malkov and Yashunin, 2016 ]
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HNSW inference

A bit more conceptually challenging is HNSW. But nowadays preferred algorithm due to 
generally better recall / performance behavior.  

Vector Search 

L0

L1

[ Malkov and Yashunin, 2016 ]

q

e

Search via greedy graph traversal
(keeping closest k visited nodes along the way)

BUT:

- Graph construction can be very 
compute and memory intensive

- More difficult to parallelize



Vector Search 
Postgres implementation

Most well-known and popular: pgvector
[ https://github.com/pgvector/pgvector ]

Introduces new PG type (vector), distance operators acting on vectors, and can build 
indices for vector columns.

Exact, and HNSW or IVFFLAT based approximate vector search. Many different metrics, 
but here we are mainly interested in euclidean distance (L2).

Query example:

select * from table where embedding <-> ‘[...]’ < 10 order by embedding <-> ‘[...]’ limit 10000

https://github.com/pgvector/pgvector


Vector Search 
Postgres implementation

Most well-known and popular: pgvector
[ https://github.com/pgvector/pgvector ]

Introduces new PG type (vector), distance operators acting on vectors, and can build 
indices for vector columns.

Exact, and HNSW or IVFFLAT based approximate vector search. Many different metrics, 
but here we are mainly interested in euclidean distance (L2).

Query example:

select * from table where embedding <-> ‘[...]’ < 10 order by embedding <-> ‘[...]’ limit 10000

Column of vector type Metric operator (L2) 
acting on vector types 

Vector type
for example: ‘[3,0.1,-1.2,5]’

https://github.com/pgvector/pgvector


Vector Search 
Postgres implementation

Most well-known and popular: pgvector
[ https://github.com/pgvector/pgvector ]

Introduces new PG type (vector), distance operators acting on vectors, and can build 
indices for vector columns.

Exact, and HNSW or IVFFLAT based approximate vector search. Many different metrics, 
but here we are mainly interested in euclidean distance (L2).

Query example:

select * from table where embedding <-> ‘[...]’ < 10 order by embedding <-> ‘[...]’ limit 10000

Index on vector column

Reduce number of required distance calculations via “index” /  approx vector search.
(Worst case: For all rows) 

https://github.com/pgvector/pgvector
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PostgreSQL plan generation (simplified)

FROM

WHERE

ORDER BY

LIMIT

Sequential or index scan 
(depending on cost estimate)
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Vector Search 
pgvector

PostgreSQL plan generation (simplified)

FROM

WHERE

ORDER BY

LIMIT

Pgvector implements INDEXAM
(Index Access Method Interface)

Core index functions:

ambuild
aminsert 
ambeginscan
amrescan
amendscan
amgettuple
…

One or both will
be pushed 
down to 
INDEXAM 
implementation

More on this later …
PostgreSQL execution 
ROW based

Has to return ItemPointerData 
on each call (xs_heaptid) 

Pointer to an item within a 
disk page of a known file
(block + offset)



Vector Search 
pgvector

PostgreSQL plan generation (simplified)

FROM

WHERE

ORDER BY

LIMIT

Pgvector implements INDEXAM
(Index Access Method Interface)

Core index functions:

ambuild
aminsert 
ambeginscan
amrescan
amendscan
amgettuple
…

One or both will
be pushed 
down to 
INDEXAM 
implementation

More on this later …
PostgreSQL execution 
ROW based

First call: 
Pgvector performs approx 
vector search.

Subsequent calls:
Found ItemPointers are 
returned.



Vector Search 
pgvector

What about performance ?

GIST-960 dataset [ http://corpus-texmex.irisa.fr/ ] [ Jégou, Douze and Schmid, 2011 ]

Details:
- 1M vectors
- 960d 
- 1k test vectors
- Pre-computed 100 nearest neighbors

 (Vectors given by global GIST descriptors of image dataset. GIST summarizes the gradient information for different parts of an image.)

http://corpus-texmex.irisa.fr/


Vector Search 
pgvector

What about performance ?

GIST-960 dataset 

Note:
- Ubuntu on i9-13900H + RTX 4070
- Standard Postgres v15 

(no special compile flags besides -g)
- Pg_vector master on Mar 24, 2025

(commit 05182479a2a62e04300386b4da18be02fcb819b5)
(compiled with -O3 -march=native -g) 

- Ivfflat 200 clusters; hnsw.ef_search=100
- Queried locally via python+psycopg2

(on persistent connection)
- Recall computation for ivfflat via 

taking smallest # probes for fixed
recall + median at fixed recall 

 Query: select id from gist order by embedding <-> "+q+" limit 100
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Vector Search 
pgvector (ivfflat)

What about performance ?

GIST-960 dataset 

Ivfflat perf analysis [ https://github.com/brendangregg/FlameGraph ]

Time thieves:

- ReadBuffers
- Tuplesort
- L2 distance calc

https://github.com/brendangregg/FlameGraph


Vector Search 
pgvector (ivfflat)

What about performance ?

pgvector github, ivfscan.c, 2025

All points in cluster(s) 
are read on each call !

License of pgvector, 2025 

Time thieves:

- ReadBuffers
- Tuplesort
- L2 distance calc



… HACKING PGVECTOR …



Vector Search 
pgvector hack (ivfflat)

Can we do better ?  [ https://github.com/Sednai/pgvector/tree/AERO ]

If we have sufficient memory, keep index data persistent (in Non-Postgres mem).

- No Buffers but continuous 2D arrays
- Avoiding TupleSort 
- Possibility for better optimization for hardware

https://github.com/Sednai/pgvector/tree/AERO


Vector Search 
pgvector hack (ivfflat)

Implementation

Own Postgres background process with task queue in shared memory.



Vector Search 
pgvector hack (ivfflat)

Implementation

Own Postgres background process with task queue in shared memory.

Re-routing the index tuple scan as task to background worker during scan:

own process



Vector Search 
pgvector hack (ivfflat)

Implementation

For an indexed table, we store the index vectors and corresponding location info 
(ItemPointerData) as raw native arrays in Non-Postgres memory. 
(The data will be persistent over the lifetime of the background process. We have not implemented active memory management yet. Background process 
will crash if you run out of memory !) 

C++

own process



Vector Search 
pgvector hack (ivfflat)

Implementation

For a query point (vector), we compute its distance against all index vectors and 
distance sort. Location infos are returned to the user process. 
(More precisely, the corresponding page number and ItemPointerData are returned.)

C++

own process



Vector Search 
pgvector hack (ivfflat)

What about performance ?

GIST-960 dataset 

Note for ivfflat (bgw cpu):

- No special tricks
- No parallelisation
- No manual vector instructions
- No HBM memory

Query: select id from gist order by embedding <-> "+q+" limit 100
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Vector Search 
pgvector hack (ivfflat)

What about performance ?

GIST-960 dataset 

Note for ivfflat (bgw cpu):

- No special tricks
- No parallelisation
- No manual vector instructions
- No HBM memory

Homework exercise: 

Maybe can be optimized …



Vector Search 
pgvector hack (ivfflat)

Can we do better ?

Since we have already a setup to keep index persistent in Non-Postgres memory, we 
can easily go one step further and offload the index and compute to a GPU !  

Compute of distances and sort on device. 
Return only sorted index ids from device
(Mapping to location info on CPU)



Vector Search 
pgvector hack (ivfflat)

Can we do better ?

Since we have already a setup to keep index persistent in Non-Postgres memory, we 
can easily go one step further and offload the index and compute to a GPU !  

Recall: We have 6x A100 GPUs in our distributed Postgres database 

    For FP32 vectors of dim 100 that is enough to keep > 1B index points persistent

Compute of distances and sort on device 
Return only sorted index ids from device
(Mapping to location info on CPU)

480 GB in additional memory !



… GPU ACCELERATED VECTOR SEARCH …



Vector Search 
pgvector hack (ivfflat)

Implementation

For an indexed table, we store now the index vectors on a GPU device.
(The data will be persistent over the lifetime of the background process. We have not implemented active memory management yet. Background process 
will crash if you run out of memory !) 

C++ / CUDA
(essentially one big cudaMemcpy)

own process



pgvector hack (ivfflat)

Implementation

For a query point (vector), we compute its distance against all index vectors and 
distance sort on device. Only ordered index ids are returned from GPU to CPU process.

Vector Search 

C++ / CUDA
(custom kernels)

own process



Vector Search 
pgvector hack (ivfflat)

What about performance ?

GIST-960 dataset 

Query: select id from gist order by embedding <-> "+q+" limit 100



Aero aims to complement the efforts of the EU Processor Initiative (EPI) project by 
developing the open-source software ecosystem required to not only improve the 
efficiency of the EPI hardware but also accelerate and ease the processor’s integration 
into the cloud.

Heterogeneous hardware

PROBLEM: Divers set of accelerators from different vendors (NVIDIA, AMD, INTEL,...)

oneAPI
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Aero aims to complement the efforts of the EU Processor Initiative (EPI) project by 
developing the open-source software ecosystem required to not only improve the 
efficiency of the EPI hardware but also accelerate and ease the processor’s integration 
into the cloud.

Heterogeneous hardware

oneAPI

Open, cross-industry, standards-based, unified, multi-architecture, 
multi-vendor programming model, adopted by Intel.

Intel oneAPI base toolkit plugins for NVIDIA and AMD



pgvector hack (ivfflat)

Implementation

For a query point (vector), we compute its distance against all index vectors and 
distance sort on device. Only ordered index ids are returned from GPU to CPU process.

Vector Search 

C++ / oneAPI
(custom kernels)

own process



pgvector hack (ivfflat)

Implementation

For a query point (vector), we compute its distance against all index vectors and 
distance sort on device. Only ordered index ids are returned from GPU to CPU process.

Vector Search 



Vector Search 
pgvector hack (ivfflat)

What about performance ?

GIST-960 dataset 

Query: select id from gist order by embedding <-> "+q+" limit 100

With OpenCL CPU oneAPI backend 
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What about performance ?

GIST-960 dataset 

Query: select id from gist order by embedding <-> "+q+" limit 100

With Nvidia GPU oneAPI backend 



Vector Search 
pgvector hack (ivfflat)

What about performance ?

GIST-960 dataset 

Query: select id from gist order by embedding <-> "+q+" limit 100

With Nvidia GPU oneAPI backend 

Seems my CUDA kernels could be improved …



Vector Search 
pgvector hack (ivfflat)

What about performance ?

GIST-960 dataset 

Query: select id from gist order by embedding <-> "+q+" limit 100

    Laptop GPU Laptop CPU           AMD EPYC CPU [64 threads] 



… A SPECIAL CASE …
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What we want:

Fast way to retrieve (most) points up to a max distance from a query point. 
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Fast way to retrieve (most) points up to a max distance from a query point. 
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Operator for L2 distance

Need quite large limit !



Vector Search 
pgvector

What we want:

Fast way to retrieve (most) points up to a max distance from a query point. 

PROBLEM: Very very slow …

( From pgvector github README.md, 2025 )

Need quite large limit !



Vector Search 
pgvector

Why ?

Let us look with GDB what actually happens for a query of type

select * from table where embedding <-> ‘[...]’ < 10 order by embedding <-> ‘[...]’ limit 10000

by setting a breakpoint at ivfscan.c:ivfflatgettuple :



Vector Search 
pgvector

Why ?

Let us look with GDB what actually happens for a query of type

select * from table where embedding <-> ‘[...]’ < 10 order by embedding <-> ‘[...]’ limit 10000

by setting a breakpoint at ivfscan.c:ivfflatgettuple :

IndexScanDesc No scan keys are pushed down !



Vector Search 
pgvector

Why no scan keys ?

We have to dig deeper … iss_NumScanKeys = 0 already in IndexScanState 

ExecInitBuildScanKeys:  quals are Null

=> Already before execution level no scan keys !
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Let us look into indxpath.c:
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Query: 

select * from table where embedding <-> ‘[...]’ < 10 …

Indexkey can not be matched !

op( indexkey, ’[...’] ) op const
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pgvector

Why no scan keys ?

We have to dig deeper …

Let us look into indxpath.c:

Query: 

select * from table where embedding <-> ‘[...]’ < 10 …

Indexkey can not be matched !

op( indexkey, ’[...’] ) op const=> Looks like Postgres enhancement required !

BUT: May take ages to get upstream …



Vector Search 
pgvector hack

Quicker to production: 

Let us introduce a new operator, thereby hacking the WHERE into the ORDER BY:

( At the time being, only for euclidean metric )
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Let us introduce a new operator, thereby hacking the WHERE into the ORDER BY:

Query: 

select * from table order by embedding <!> (‘[...]’, -1, 10.0) limit 10000 



Vector Search 
pgvector hack

Quicker to production: 

Let us introduce a new operator, thereby hacking the WHERE into the ORDER BY:

Query: 

select * from table order by embedding <!> (‘[...]’, -1, 10.0) limit 10000 

Will be evaluated inside of pgvector ! 

=> Can be executed on GPU ! 



Vector Search 
pgvector

What about performance ?

- 2M row Gaia dataset, 79 float8 features
- 40 ivfflat clusters, ivfflat.probes = 20
- Retrieve points up to a max distance from a query point (sparse return) 
- After warmup

Original pgvector
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- 40 ivfflat clusters, ivfflat.probes = 20
- Retrieve points up to a max distance from a query point (sparse return)
- After warmup

BGW with filter on CPU
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- After warmup

BGW with filter on GPU



Vector Search 
pgvector hack

What about performance ?

- 2M row Gaia dataset, 79 float8 features 
- 40 ivfflat clusters, ivfflat.probes = 20
- Retrieve points up to a max distance from a query point (sparse return) 
- After warmup

BGW with filter on GPU

=> 200x speedup !



Vector Search 
pgvector hack

General remarks:

- No active memory management
( memory freed only upon killing the worker )

- Enough shared memory needs to be reserved for number of expected returns
- As more sparse the return, as better will be the speedup
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pgvector hack

General remarks:

- No active memory management
( memory freed only upon killing the worker )

- Enough shared memory needs to be reserved for number of expected returns
- As more sparse the return, as better will be the speedup

Can we do more ?

- Improvements of code (GPU kernels) are possible. 

- Faster initial loading via Nvidia GPUDirect ( NVMe <-> GPU DMA )

- Product quantization

- For significant performance improvement, more vectorization  … 
(for instance, to query for several points at once)



… OUTLOOK …



Intro

Aero aims to complement the efforts of the EU Processor Initiative (EPI) project by 
developing the open-source software ecosystem required to not only improve the 
efficiency of the EPI hardware but also accelerate and ease the processor’s integration 
into the cloud.

Intertwined Gaia+SED pilots:

- Process efficiently constantly increasing volumes of data. 

- Enable GPU computations directly within the database

   Example: Hack to GPU accelerate a Postgres vector index
   
    (WARNING: That was actually easy …)



SED pilot:

- Enable GPU computations directly within the database

Outlook 

Multi-faceted

- Adaptation of PG-Strom to distributed Postgres ( XL/XC lineage )
 [ https://heterodb.github.io/pg-strom/ ]
( for GPU acceleration of general scans, aggregates and joins …) 

First milestone reached in modernizing XL/XC
( pushed XC to PGv15 with sufficient functionality )

https://heterodb.github.io/pg-strom/


Funded by the European Union. Views and opinions are however those of the author(s) only and do not necessarily reflect those of the European Union or the 
HaDEA. Neither the European Union nor the granting authority can be held responsible for them. Project number: 101092850.

AERO has also received funding from UKRI under grants no. 10048318 and 10048915, and the Swiss State Secretariat for Education, Research, and 
Innovation.

… THANK YOU …
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