
©EDB 2024 — ALL RIGHTS RESERVED.

Window Functions Are Easier and
More Powerful Than You Think

Vik Fearing
Swiss PGDay, Rapperswil
June 27, 2024

©EDB 2024 — ALL RIGHTS RESERVED.

What are we doing here?

This presentation is all about window functions, a powerful feature of the SQL
Standard, almost fully implemented in PostgreSQL.

You will learn about the handful of pure window functions provided by the
Standard and PostgreSQL.

More importantly, you will learn how to write window specifications, with
elaborate frames that can eliminate hundreds of lines of application code.

©EDB 2024 — ALL RIGHTS RESERVED.

Why me?

▪ Why not? You could do this, too!
▪ I have been involved in PostgreSQL

development since 2008, with a special interest
in SQL language features.

▪ I am a member of the SQL Standards
committee.

©EDB 2024 — ALL RIGHTS RESERVED.

The slides are available here:

https://www.pgday.ch/common/slides/
2024_windowfunctions.pdf

https://www.pgday.ch/common/slides/2024_windowfunctions.pdf
https://www.pgday.ch/common/slides/2024_windowfunctions.pdf

Sample Data

©EDB 2024 — ALL RIGHTS RESERVED.

The data we will be using for the examples comes from the pagila sample
database available on GitHub. This is a port of the sakila sample database from
MySQL.

We will look at customer names and the stores they shop at.

Sample Data

https://github.com/xzilla/pagila

©EDB 2024 — ALL RIGHTS RESERVED.

Let’s focus on a small portion of the customers so that we can fit all this on the
slides. 😊

SELECT store_id, first_name, last_name
FROM customer
WHERE first_name >= 'W'
ORDER BY first_name, last_name;

Sample Data

©EDB 2024 — ALL RIGHTS RESERVED.

Sample Data
store_id first_name last_name

1 WADE DELVALLE

1 WALLACE SLONE

2 WALTER PERRYMAN

1 WANDA PATTERSON

2 WARREN SHERROD

2 WAYNE TRUONG

1 WENDY HARRISON

2 WESLEY BULL

2 WILLARD LUMPKIN

2 WILLIAM SATTERFIELD

2 WILLIE MARKHAM

2 WILLIE HOWELL

2 WILMA RICHARDS

2 YOLANDA WEAVER

2 YVONNE WATKINS

1 ZACHARY HITE

Concepts

©EDB 2024 — ALL RIGHTS RESERVED.

Concepts

▪ A row is a sequence of one or more values. The number of values in a row is the row’s degree.

▪ A table is a collection of zero or more rows. The number of rows in a table is the table’s
cardinality.

▪ A base table is a table that is persisted, and is generally what is thought of when the term “table”
is used. It is created with the CREATE TABLE statement.

▪ A derived table is a table that is derived from one or more other tables. It is the result of the
FROM clause along with any associated JOIN clauses.

▪ A grouped table is a derived table divided into groups according to a GROUP BY clause. The
resulting derived table has one row per group. Functions operating on groups are called
aggregates.

▪ A windowed table is table with one or more windows defined. Functions operating on windows
are called window functions.

Window Specifications

©EDB 2024 — ALL RIGHTS RESERVED.

We are going to add a WINDOW clause to our query.

It starts with the keyword WINDOW and then is a list of comma-separated window
specifications.

The most simple specification is just nothing.

WINDOW w AS ()

This defines the window as being over the entire resultset of the query.

Window Specifications

©EDB 2024 — ALL RIGHTS RESERVED.

The most basic of all window functions is ROW_NUMBER(), which simply assigns a
monotonically increasing number to each row.

SELECT store_id, first_name, last_name,
 ROW_NUMBER() OVER w
FROM customer
WHERE first_name >= 'W'
WINDOW w AS ()
ORDER BY first_name, last_name;

ROW_NUMBER()

©EDB 2024 — ALL RIGHTS RESERVED.

ROW_NUMBER()
store_id first_name last_name row_number

1 WADE DELVALLE 16

1 WALLACE SLONE 14

2 WALTER PERRYMAN 8

1 WANDA PATTERSON 1

2 WARREN SHERROD 11

2 WAYNE TRUONG 10

1 WENDY HARRISON 2

2 WESLEY BULL 12

2 WILLARD LUMPKIN 15

2 WILLIAM SATTERFIELD 7

2 WILLIE MARKHAM 9

2 WILLIE HOWELL 6

2 WILMA RICHARDS 5

2 YOLANDA WEAVER 4

2 YVONNE WATKINS 3

1 ZACHARY HITE 13

©EDB 2024 — ALL RIGHTS RESERVED.

If we want the window functions to operate over sorted data, we have to sort the
data in the window specification. This is independent of the main ORDER BY
clause.

SELECT store_id, first_name, last_name,
 ROW_NUMBER() OVER w
FROM customer
WHERE first_name >= 'W'
WINDOW w AS (ORDER BY first_name)
ORDER BY first_name, last_name;

ROW_NUMBER()

©EDB 2024 — ALL RIGHTS RESERVED.

ROW_NUMBER()
store_id first_name last_name row_number

1 WADE DELVALLE 1

1 WALLACE SLONE 2

2 WALTER PERRYMAN 3

1 WANDA PATTERSON 4

2 WARREN SHERROD 5

2 WAYNE TRUONG 6

1 WENDY HARRISON 7

2 WESLEY BULL 8

2 WILLARD LUMPKIN 9

2 WILLIAM SATTERFIELD 10

2 WILLIE HOWELL 12

2 WILLIE MARKHAM 11

2 WILMA RICHARDS 13

2 YOLANDA WEAVER 14

2 YVONNE WATKINS 15

1 ZACHARY HITE 16

What’s this!?

©EDB 2024 — ALL RIGHTS RESERVED.

Incomplete sorting can produce unpredictable results. If we have more columns
to sort by, we could add those. If we don’t, or if we don’t want to have a total
ordering, we can use ranking functions.

SELECT store_id, first_name, last_name,
 ROW_NUMBER() OVER w,
 RANK() OVER w,
 DENSE_RANK() OVER w
FROM customer
WHERE first_name >= 'W'
WINDOW w AS (ORDER BY first_name)
ORDER BY first_name, last_name;

ROW_NUMBER(), RANK(), and DENSE_RANK()

©EDB 2024 — ALL RIGHTS RESERVED.

ROW_NUMBER(), RANK(), and DENSE_RANK()
store_id first_name last_name row_number rank dense_rank

1 WADE DELVALLE 1 1 1

1 WALLACE SLONE 2 2 2

2 WALTER PERRYMAN 3 3 3

1 WANDA PATTERSON 4 4 4

2 WARREN SHERROD 5 5 5

2 WAYNE TRUONG 6 6 6

1 WENDY HARRISON 7 7 7

2 WESLEY BULL 8 8 8

2 WILLARD LUMPKIN 9 9 9

2 WILLIAM SATTERFIELD 10 10 10

2 WILLIE HOWELL 12 11 11

2 WILLIE MARKHAM 11 11 11

2 WILMA RICHARDS 13 13 12

2 YOLANDA WEAVER 14 14 13

2 YVONNE WATKINS 15 15 14

1 ZACHARY HITE 16 16 15

©EDB 2024 — ALL RIGHTS RESERVED.

There are two distribution window functions provided:

PERCENT_RANK() is defined the same as the function of the same name in
popular spreadsheet applications. Its value for each row is defined as the rank of
the row minus 1 divided by the number of rows minus 1. This results in values
ranging from 0.0 to 1.0.

CUME_DIST() is defined as the statistical cumulative distribution function. It is
computed as the number of rows prior to or peer with the current row divided by
the total number of rows.

Distribution Functions

Window Partitions

©EDB 2024 — ALL RIGHTS RESERVED.

We have ranked all of our customers by name, but we want to actually do this for
each store and not globally. We can partition the window to achieve this.

SELECT store_id, first_name, last_name,
 ROW_NUMBER() OVER w,
 RANK() OVER w,
 DENSE_RANK() OVER w
FROM customer
WHERE first_name >= 'W'
WINDOW w AS (
 PARTITION BY store_id
 ORDER BY first_name)
ORDER BY store_id, first_name, last_name;

ROW_NUMBER(), RANK(), and DENSE_RANK()

©EDB 2024 — ALL RIGHTS RESERVED.

ROW_NUMBER(), RANK(), and DENSE_RANK()
store_id first_name last_name row_number rank dense_rank

1 WADE DELVALLE 1 1 1

1 WALLACE SLONE 2 2 2

1 WANDA PATTERSON 3 3 3

1 WENDY HARRISON 4 4 4

1 ZACHARY HITE 5 5 5

2 WALTER PERRYMAN 1 1 1

2 WARREN SHERROD 2 2 2

2 WAYNE TRUONG 3 3 3

2 WESLEY BULL 4 4 4

2 WILLARD LUMPKIN 5 5 5

2 WILLIAM SATTERFIELD 6 6 6

2 WILLIE HOWELL 8 7 7

2 WILLIE MARKHAM 7 7 7

2 WILMA RICHARDS 9 9 8

2 YOLANDA WEAVER 10 10 9

2 YVONNE WATKINS 11 11 10

©EDB 2024 — ALL RIGHTS RESERVED.

It can be useful in real life to look at previous or following rows in the window,
perhaps even do some calculations between another row and the current row. In
this demo, the value is not so useful, but it illustrates the functionality nicely.

SELECT store_id, first_name, last_name,
 LAG(last_name) OVER w,
 LEAD(last_name) OVER w
FROM customer
WHERE first_name >= 'W'
WINDOW w AS (
 PARTITION BY store_id
 ORDER BY first_name)
ORDER BY store_id, first_name, last_name;

LAG() and LEAD()

©EDB 2024 — ALL RIGHTS RESERVED.

LAG() and LEAD()
store_id first_name last_name lag lead

1 WADE DELVALLE SLONE

1 WALLACE SLONE DELVALLE PATTERSON

1 WANDA PATTERSON SLONE HARRISON

1 WENDY HARRISON PATTERSON HITE

1 ZACHARY HITE HARRISON

2 WALTER PERRYMAN SHERROD

2 WARREN SHERROD PERRYMAN TRUONG

2 WAYNE TRUONG SHERROD BULL

2 WESLEY BULL TRUONG LUMPKIN

2 WILLARD LUMPKIN BULL SATTERFIELD

2 WILLIAM SATTERFIELD LUMPKIN MARKHAM

2 WILLIE HOWELL MARKHAM RICHARDS

2 WILLIE MARKHAM SATTERFIELD HOWELL

2 WILMA RICHARDS HOWELL WEAVER

2 YOLANDA WEAVER RICHARDS WATKINS

2 YVONNE WATKINS WEAVER

©EDB 2024 — ALL RIGHTS RESERVED.

These functions take two extra, optional arguments:
▪ The first, offset, is how many rows back (or forward) we wish to go. If not

specified, 1 is used.
▪ The second, default, is a value in case we fall off the beginning (or end) of the

partition. If not specified, NULL is used.

These functions can also treat null values specially.
▪ LAG(expr) RESPECT NULLS will fetch the value for expr from the previous

row, regardless of what it is.
▪ LAG(expr) IGNORE NULLS will fetch the value for expr from the first row

going backwards that isn’t null.

LAG() and LEAD()

©EDB 2024 — ALL RIGHTS RESERVED.

The NTILE() function allows us to split the partition into evenly sized quantiles, or
at least as evenly as possible.

SELECT store_id, first_name, last_name,
 NTILE(5) OVER w
FROM customer
WHERE first_name >= 'W'
WINDOW w AS (
 PARTITION BY store_id
 ORDER BY first_name)
ORDER BY store_id, first_name, last_name;

NTILE()

©EDB 2024 — ALL RIGHTS RESERVED.

NTILE()
store_id first_name last_name ntile

1 WADE DELVALLE 1

1 WALLACE SLONE 2

1 WANDA PATTERSON 3

1 WENDY HARRISON 4

1 ZACHARY HITE 5

2 WALTER PERRYMAN 1

2 WARREN SHERROD 1

2 WAYNE TRUONG 1

2 WESLEY BULL 2

2 WILLARD LUMPKIN 2

2 WILLIAM SATTERFIELD 3

2 WILLIE HOWELL 4

2 WILLIE MARKHAM 3

2 WILMA RICHARDS 4

2 YOLANDA WEAVER 5

2 YVONNE WATKINS 5

©EDB 2024 — ALL RIGHTS RESERVED.

We have seen how to write a window specification, giving it an ordering and
potential partitioning key.

We have seen the following functions that all work over entire partitions:
▪ ROW_NUMBER()
▪ RANK()
▪ DENSE_RANK()
▪ PERCENT_RANK()
▪ CUME_DIST()
▪ LAG(expr[, offset[, default]]) [RESPECT|IGNORE NULLS]
▪ LEAD(expr[, offset[, default]]) [RESPECT|IGNORE NULLS]
▪ NTILE(n)

Quick Recap

Window Frames

©EDB 2024 — ALL RIGHTS RESERVED.

Window frames are defined over an ordered window partition.

This means that the ORDER BY clause is necessary for the frame to make any
sense. The PARTITION BY clause is optional; without it, there will just be one
partition over the entire window.

Here is the sample data for our window frames:

SELECT customer_id, payment_date, rental_id, amount
FROM payment
WHERE customer_id = 318
ORDER BY customer_id, payment_date;

Window Frames

©EDB 2024 — ALL RIGHTS RESERVED.

Window Frames
customer_id payment_date rental_id amount

318 2006-12-26 15:52:46 3376 7.99

318 2007-01-19 11:03:20 2634 2.99

318 2007-01-29 17:08:14 3337 0.99

318 2007-02-04 3:10:32 3974 2.99

318 2007-02-07 1:31:03 224 9.99

318 2007-03-19 1:46:40 7649 0.99

318 2007-03-29 0:36:16 2643 2.99

318 2007-04-04 17:59:55 10023 5.99

318 2007-04-11 2:47:11 3732 4.99

318 2007-04-17 17:48:09 7853 0.99

318 2007-04-30 5:10:59 4356 8.99

318 2007-05-24 11:52:10 14276 2.99

©EDB 2024 — ALL RIGHTS RESERVED.

Window frames declare which rows participate in the calculation for the window
function. The simplest frame is the frame that covers the entire partition. Frames
cannot cross partition lines.

WINDOW
 w AS (
 PARTITION BY customer_id
 ORDER BY payment_date
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND UNBOUNDED FOLLOWING)

Window Frames

©EDB 2024 — ALL RIGHTS RESERVED.

Let’s reduce the frame to just 7 rows: 3 before, the current row, and three after:

SELECT customer_id, payment_date, rental_id, amount,
 FIRST_VALUE(rental_id) OVER w,
 LAST_VALUE(rental_id) OVER w
FROM payment
WHERE customer_id = 318
WINDOW
 w AS (
 PARTITION BY customer_id
 ORDER BY payment_date
 ROWS BETWEEN 3 PRECEDING AND 3 FOLLOWING)
ORDER BY customer_id, payment_date;

FIRST_VALUE() and LAST_VALUE()

©EDB 2024 — ALL RIGHTS RESERVED.

FIRST_VALUE() and LAST_VALUE()
customer_id payment_date rental_id amount first_value last_value

318 2006-12-26 15:52:46 3376 7.99 3376 3974

318 2007-01-19 11:03:20 2634 2.99 3376 224

318 2007-01-29 17:08:14 3337 0.99 3376 7649

318 2007-02-04 3:10:32 3974 2.99 3376 2643

318 2007-02-07 1:31:03 224 9.99 2634 10023

318 2007-03-19 1:46:40 7649 0.99 3337 3732

318 2007-03-29 0:36:16 2643 2.99 3974 7853

318 2007-04-04 17:59:55 10023 5.99 224 4356

318 2007-04-11 2:47:11 3732 4.99 7649 14276

318 2007-04-17 17:48:09 7853 0.99 2643 14276

318 2007-04-30 5:10:59 4356 8.99 10023 14276

318 2007-05-24 11:52:10 14276 2.99 3732 14276

©EDB 2024 — ALL RIGHTS RESERVED.

These functions can also get the first (or last) value in the frame that isn’t the null
value.

FIRST_VALUE(expr) RESPECT NULLS OVER w

FIRST_VALUE(expr) IGNORE NULLS OVER w

FIRST_VALUE() and LAST_VALUE()

©EDB 2024 — ALL RIGHTS RESERVED.

The FIRST_VALUE() and LAST_VALUE() functions are special cases of the
NTH_VALUE() function.

NTH_VALUE(expr, offset) [FROM FIRST|LAST] [RESPECT|IGNORE NULLS]

Notice there is no default value if the offset falls off the frame!

FIRST_VALUE(expr) → NTH_VALUE(expr, 1) FROM FIRST

LAST_VALUE(expr) → NTH_VALUE(expr, 1) FROM LAST

PostgreSQL does not (yet) implement FROM LAST or IGNORE NULLS.

NTH_VALUE()

©EDB 2024 — ALL RIGHTS RESERVED.

We have learned the most basic framing for window specifications, using ROWS
between two offsets from the current row being processed or UNBOUNDED to go
all the way to the beginning (or end) of the frame.

We have seen the following functions that all work over frames:
▪ FIRST_VALUE(expr) [RESPECT|IGNORE NULLS]
▪ LAST_VALUE(expr) [RESPECT|IGNORE NULLS]
▪ NTH_VALUE(expr, offset) [FROM FIRST|LAST] [RESPECT|IGNORE NULLS]

The partition-level window functions seen earlier will completely ignore any
specified frame. In fact, according to the standard, they cannot even be used over
a window specification that contains a framing clause.

Quick Recap

Aggregates Over Window Frames

©EDB 2024 — ALL RIGHTS RESERVED.

All aggregate functions can operate over a window frame. This allows us to do
interesting calculations such as running totals and rolling averages.

This is where windows really shine.

Aggregates over window frames

©EDB 2024 — ALL RIGHTS RESERVED.

We can use the SUM() aggregate function over all the rows from the start of the
partition up to the current row being processed. This will give us a running total.

SELECT customer_id, payment_date, rental_id, amount,
 SUM(amount) OVER w
FROM payment
WHERE customer_id = 318
WINDOW
 w AS (
 PARTITION BY customer_id
 ORDER BY payment_date
 ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)
ORDER BY customer_id, payment_date;

Running Totals

©EDB 2024 — ALL RIGHTS RESERVED.

Running Totals
customer_id payment_date rental_id amount running_total

318 2006-12-26 15:52:46 3376 7.99 7.99

318 2007-01-19 11:03:20 2634 2.99 10.98

318 2007-01-29 17:08:14 3337 0.99 11.97

318 2007-02-04 3:10:32 3974 2.99 14.96

318 2007-02-07 1:31:03 224 9.99 24.95

318 2007-03-19 1:46:40 7649 0.99 25.94

318 2007-03-29 0:36:16 2643 2.99 28.93

318 2007-04-04 17:59:55 10023 5.99 34.92

318 2007-04-11 2:47:11 3732 4.99 39.91

318 2007-04-17 17:48:09 7853 0.99 40.90

318 2007-04-30 5:10:59 4356 8.99 49.89

318 2007-05-24 11:52:10 14276 2.99 52.88

©EDB 2024 — ALL RIGHTS RESERVED.

Let’s get the running totals per date instead of per timestamp.

SELECT customer_id,
 CAST(payment_date AS DATE),
 rental_id,
 amount,
 SUM(amount) OVER w
FROM payment
WHERE customer_id = 63
WINDOW
 w AS (
 PARTITION BY customer_id
 ORDER BY CAST(payment_date AS DATE)
 ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)
ORDER BY customer_id, CAST(payment_date AS DATE)
FETCH FIRST 11 ROWS ONLY;

Running Totals

©EDB 2024 — ALL RIGHTS RESERVED.

Running Totals
customer_id payment_date rental_id amount running_total

63 2007-01-21 3923 8.99 8.99

63 2007-02-07 9795 0.99 9.98

63 2007-02-25 15060 5.99 15.97

63 2007-03-06 6847 8.99 24.96

63 2007-03-10 5585 6.99 31.95

63 2007-03-11 13624 8.99 40.94

63 2007-03-11 9007 0.99 41.93

63 2007-03-16 4587 4.99 46.92

63 2007-03-16 13089 0.99 47.91

63 2007-03-17 5832 4.99 52.90

63 2007-03-21 9549 3.99 56.89

What is going
on here?

©EDB 2024 — ALL RIGHTS RESERVED.

The problem is we need to look ahead and include all of the rows past the current
row where the value is the same. This is done by changing ROWS to RANGE.

SELECT customer_id,
 CAST(payment_date AS DATE),
 rental_id,
 amount,
 SUM(amount) OVER w
FROM payment
WHERE customer_id = 63
WINDOW
 w AS (
 PARTITION BY customer_id
 ORDER BY CAST(payment_date AS DATE)
 RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)
ORDER BY customer_id, CAST(payment_date AS DATE)
FETCH FIRST 11 ROWS ONLY;

Running Totals

©EDB 2024 — ALL RIGHTS RESERVED.

Running Totals
customer_id payment_date rental_id amount running_total

63 2007-01-21 3923 8.99 8.99

63 2007-02-07 9795 0.99 9.98

63 2007-02-25 15060 5.99 15.97

63 2007-03-06 6847 8.99 24.96

63 2007-03-10 5585 6.99 31.95

63 2007-03-11 13624 8.99 41.93

63 2007-03-11 9007 0.99 41.93

63 2007-03-16 4587 4.99 47.91

63 2007-03-16 13089 0.99 47.91

63 2007-03-17 5832 4.99 52.90

63 2007-03-21 9549 3.99 56.89

©EDB 2024 — ALL RIGHTS RESERVED.

Let’s get more advanced! Let’s get the rolling averages for 1 day, 3 days, and 7
days for all payments towards the beginning of our data.

First, let’s get the payments per day:

SELECT CAST(payment_date AS DATE) AS payment_date,
 SUM(amount) AS amount
FROM payment
GROUP BY CAST(payment_date AS DATE)
ORDER BY CAST(payment_date AS DATE)
OFFSET 10
FETCH NEXT 20 ROWS ONLY

Rolling Averages

©EDB 2024 — ALL RIGHTS RESERVED.

Rolling Averages
payment_date amount

2006-12-05 24.92
2006-12-06 51.89
2006-12-07 51.88
2006-12-08 55.87
2006-12-09 15.96
2006-12-10 54.88
2006-12-11 66.85
2006-12-12 58.9
2006-12-13 45.87
2006-12-14 46.87
2006-12-15 50.87
2006-12-16 78.85
2006-12-17 67.8
2006-12-18 53.86
2006-12-19 94.8
2006-12-20 117.72
2006-12-21 111.76
2006-12-22 66.85
2006-12-23 138.7
2006-12-24 100.76

©EDB 2024 — ALL RIGHTS RESERVED.

Now we can put our windows on top of the existing aggregates!

SELECT CAST(payment_date AS DATE) AS payment_date,
 SUM(amount) AS amount,
 ROUND(AVG(SUM(amount)) OVER w3, 3) AS "3-day average",
 ROUND(AVG(SUM(amount)) OVER w7, 3) AS "7-day average"
FROM payment
GROUP BY CAST(payment_date AS DATE)
WINDOW
 w3 AS (
 ORDER BY CAST(payment_date AS DATE)
 RANGE BETWEEN '3 days' PRECEDING AND CURRENT ROW),
 w7 AS (
 ORDER BY CAST(payment_date AS DATE)
 RANGE BETWEEN '7 days' PRECEDING AND CURRENT ROW)
ORDER BY CAST(payment_date AS DATE)
OFFSET 10
FETCH NEXT 20 ROWS ONLY

Rolling Averages

©EDB 2024 — ALL RIGHTS RESERVED.

Rolling Averages
payment_date amount 3-day average 7-day average

2006-12-05 24.92 40.645 43.02
2006-12-06 51.89 44.643 45.39
2006-12-07 51.88 45.39 49.63
2006-12-08 55.87 46.14 47.388
2006-12-09 15.96 43.9 42.273
2006-12-10 54.88 44.648 44.645
2006-12-11 66.85 48.39 46.89
2006-12-12 58.9 49.148 47.644
2006-12-13 45.87 56.625 50.263
2006-12-14 46.87 54.623 49.635
2006-12-15 50.87 50.628 49.509
2006-12-16 78.85 55.615 52.381
2006-12-17 67.8 61.098 58.861
2006-12-18 53.86 62.845 58.734
2006-12-19 94.8 73.828 62.228
2006-12-20 117.72 83.545 69.58
2006-12-21 111.76 94.535 77.816
2006-12-22 66.85 97.783 80.314
2006-12-23 138.7 108.758 91.293
2006-12-24 100.76 104.518 94.031

Extensions and Abbreviations

©EDB 2024 — ALL RIGHTS RESERVED.

That rolling averages query was a lot! Even for the overly verbose SQL it is a lot.

SELECT CAST(payment_date AS DATE) AS payment_date,
 SUM(amount) AS amount,
 ROUND(AVG(SUM(amount)) OVER w3, 3) AS "3-day average",
 ROUND(AVG(SUM(amount)) OVER w7, 3) AS "7-day average"
FROM payment
GROUP BY CAST(payment_date AS DATE)
WINDOW
 w3 AS (
 ORDER BY CAST(payment_date AS DATE)
 RANGE BETWEEN '3 days' PRECEDING AND CURRENT ROW),
 w7 AS (
 ORDER BY CAST(payment_date AS DATE)
 RANGE BETWEEN '7 days' PRECEDING AND CURRENT ROW)
ORDER BY CAST(payment_date AS DATE)
OFFSET 10
FETCH NEXT 20 ROWS ONLY

Extensions and Abbreviations

©EDB 2024 — ALL RIGHTS RESERVED.

We can separate the partitioning and ordering from the framing, like so:

WINDOW
 w3 AS (
 ORDER BY CAST(payment_date AS DATE)
 RANGE BETWEEN '3 days' PRECEDING AND CURRENT ROW),
 w7 AS (
 ORDER BY CAST(payment_date AS DATE)
 RANGE BETWEEN '7 days' PRECEDING AND CURRENT ROW)

WINDOW
 w AS (ORDER BY CAST(payment_date AS DATE)),
 w3 AS (w RANGE BETWEEN '3 days' PRECEDING AND CURRENT ROW),
 w7 AS (w RANGE BETWEEN '7 days' PRECEDING AND CURRENT ROW)

Extensions and Abbreviations

©EDB 2024 — ALL RIGHTS RESERVED.

If the frame we want ends at the current row, we can omit the BETWEEN and just
specify the start:

WINDOW
 w AS (ORDER BY CAST(payment_date AS DATE)),
 w3 AS (w RANGE BETWEEN '3 days' PRECEDING AND CURRENT ROW),
 w7 AS (w RANGE BETWEEN '7 days' PRECEDING AND CURRENT ROW)

WINDOW
 w AS (ORDER BY CAST(payment_date AS DATE)),
 w3 AS (w RANGE '3 days' PRECEDING),
 w7 AS (w RANGE '7 days' PRECEDING)

Extensions and Abbreviations

©EDB 2024 — ALL RIGHTS RESERVED.

Here is our final version, which is quite concise and much easier to read.

SELECT CAST(payment_date AS DATE) AS payment_date,
 SUM(amount) AS amount,
 ROUND(AVG(SUM(amount)) OVER w3, 3) AS "3-day average",
 ROUND(AVG(SUM(amount)) OVER w7, 3) AS "7-day average"
FROM payment
GROUP BY CAST(payment_date AS DATE)
WINDOW
 w AS (ORDER BY CAST(payment_date AS DATE)),
 w3 AS (w RANGE '3 days' PRECEDING),
 w7 AS (w RANGE '7 days' PRECEDING)
ORDER BY CAST(payment_date AS DATE)
OFFSET 10
FETCH NEXT 20 ROWS ONLY

Extensions and Abbreviations

Creating Your Own

©EDB 2024 — ALL RIGHTS RESERVED.

It easy to create your own custom aggregate and use it over a window frame. It is
much harder to create your own custom window function. Here is a git repository
that shows how it can be done.

Creating Your Own

https://github.com/xocolatl/extra_window_functions/

©EDB 2024 — ALL RIGHTS RESERVED.

Please leave feedback!

Vik Fearing, EDB

