cﬁﬂ/
\

N/ S

Solving PostgreSQL connection scalability:
Insights from CERN'’s GitLab Service

Maurizio De Giorgi, Ismael Posada Trobo

27" Jun 2024

Maurizio De Giorgi

|

Senior Database Engineer at CERN since Sep 2020
DB on Demand: Service Manager and DevOps

Long career in many different roles, industry, markets with a
strong focus on databases and data stores

= Always looking at new technology, paradigms and trends

11

DB on Demand is hiring a early career technician!

(@]
J[N) Maurizio De Giorgi

maurizio.deqiorgi@cern.ch

27" Jun 2024 Maurizio De Giorgi | Solving PostgreSQL connection scalability: Insights from CERN'’s GitLab Service 2

https://www.linkedin.com/in/maurizio-de-giorgi-0410751
mailto:maurizio.degiorgi@cern.ch
https://cern.ch/it-da-db-2024-105-grae

Ismael Posada Trobo

|

Enthusiast Cloud Engineer at CERN since 2014

Version Control Systems Tech Lead and Engineering
Manager at CERN

= GitLab Contributor and member of the GitLab
Customer Advisory Board

Author of several scientific papers

Several years of experience in Cloud technologies,
fueled by a passion for technologies

|

|

|

(@]
J[N) Ismael Posada Trobo

ismael.posada.trobo@cern.ch

27" Jun 2024 Maurizio De Giorgi | Solving PostgreSQL connection scalability: Insights from CERN'’s GitLab Service

https://www.linkedin.com/in/ismael-posada-trobo/
mailto:ismael.posada.trobo@cern.ch

e Established in 1954
e 23 Member states
e Our mission:

¢ Unveil how the universe
works and what it is made
of

* Provide a unique range of
particle accelerator
facilities to enable
research at the forefront
of the human knowledge

e Unite people from all over
the world to push the
frontiers of science and
technology

¥
e

-~ >
P S

@) 27" Jun 2024 Maurizio De Giorgi | Solving PostgreSQL connection scalability: Insights from CERN’s GitLab Service 4

The Large Hadron Collider

World’ s Irgest particle accelerator
27 km (16 8 mlles) ring of superconductlng magnets

ﬁ —‘\

‘Partlcles C|rcle‘ the accelerator 11.245 tlmes/s
reaching 99.9999991% the speed of I|ght

M i SRR
R ¥ =
.. g

Magnets are cooled to -271.3°C (-456.34°F)
a temperature colder than outer space

Lead ioncollisiéns create femperatures of 100 000x hotter than
the heart .of the sun

@) 27" Jun 2024 Maurizio De Giorgi | Solving PostgreSQL connection scalability: Insights from CERN'’s GitLab Service 5

AARRRRIRR T =

AR RN A,
2 Y e L L)
4 v

@) 27" Jun 2024 Maurizio De Giorgi | Solving PostgreSQL connection scalability: Insights from CERN’s GitLab Service 6

Databases at CERN: Oracle

 Oracle databases since 1982

105 Oracle databases

More than 11.800 Oracle accounts

RAC, Active Data Guard, OEM, RMAN...
Complex environment

Used by

* Administrative Information Services

* Engineering teams

» Accelerator and experiments

Full DBA support

=~ 5PB of data

LEP NOTE 374
R CERN LIBRARIES, GENEVA 26.4.1982

26.4.1982 SCAN-0009042

ORACLE = the data base management system for LEP

J.Schinzel

Following tha dacision that an efficient data basae system is required for the LEP
project and that the systems at present in usa at CERN are not adequate, an
enquiry into possible data base management systems on the market was launched
early this yaear.

The enquiry specified that tha data base systems should be "ralational™ as opposed
to the systems which usa "hierarchical™ or "network™ data structures. Hierarchical
systems, e.g. INFOL, allow only limited possibilities for structuring data.

Network systems require navigational techniques to access data which has a
predefined structure. Relational systems transform complex data structures into
simple two-dimensional tables which are easy to visualize. These systems are

intended for applications where preplanning is difficult and are designed to
provide ease of use both for tha data bagae administrator and for the uninitiated
and user.

Tha enquiry was addressed to 33 firms, and of the 13 systems offerad only six
claimed to be relational. Of these, the system ORACLE of Relational Softwarae Inc.
was chosen as the most suitable. ORACLE runs on both Digital Equipment and IBM
computers.

27" Jun 2024 Maurizio De Giorgi | Solving PostgreSQL connection scalability: Insights from CERN'’s GitLab Service

Databases at CERN: DBOD

* Database On Demand (DBOD)

» DBaaS conceived in 2011
* User-managed MySQL, PostgreSQL, InfluxDB database instances
* Empowers users to be their own DBA
» Flexible architecture allowing to easily integrate other DBMS
* More than 1200 database server instances
+ =600 MySQL, =400 PostgreSQL, =200 InfluxDB
+ =150 TB of data
* A number of key database applications:
+ DBOD own databases
* Authorization and authentication (SSO)
* Experiments (ATLAS, LHCDb, etc.)
« WLCG File Transfer Service
* GitLab, Puppet, Foreman, Teigi (secrets)
* Openstack (nova, ironic)
» Security (some SOC apps)
* Indico, Zenodo, Jira, ServiceNow = MySQL ® PostgreSQL InfluxDB

27" Jun 2024 Maurizio De Giorgi | Solving PostgreSQL connection scalability: Insights from CERN'’s GitLab Service

*+ EOS (EOS Open Storage)
* snapshots copy archive m

« wals archive

DBOD @
DBOD Architecture] 2 =
« Complex DBaa$S environment e e I posgres poses
» Integrated with CERN infrastructure
* Mostly open source -
* Infrastructure as Code 7“‘:1"””‘:]“ —— 5 e
« Deploy on VM/Bare Metal)] N -
- Systemd managed services e I Od —
* NetApp Storage @k@@ Q
 data/wals NFS volumes ‘ .
« snapshot based backups @ E

NFS storage @

27" Jun 2024 Maurizio De Giorgi | Solving PostgreSQL connection scalability: Insights from CERN'’s GitLab Service

DBOD Automation

Web automation \ + REQUEST NEW INSTANCE \ Signed in as Maurizio De Giorgi from CERN e

(G

» Automated backup and recovery services O & imocey B B v @

+ Upgrade checker to enable self-service upgrades o
* once errors and warnings in the report are fixed

+ Management of configuration files P — o0

* Cloning -

« Integrated monitoring . -

* Integrated upgrades [E— : 3
» Primary-replica upgrade logic

Ops automation oo o o | oz [o

« Continuous validation of backups 5

* Instance and storage migration .

» Automated replica provisioning = @ = | A L

+ Automated replication switchover - - - - B Fra—

+ Detection of idle instances ’ . ; ; . ’ :

* Integrated password hash cracker @ ° '

27" Jun 2024 Maurizio De Giorgi | Solving PostgreSQL connection scalability: Insights from CERN'’s GitLab Service

GitLab at CERN

« GitLab is considered an important piece
of the ecosystem at CERN
» Cloud Hybrid architecture, using the Helm
deployment since 2022 (was Omnibus). AppServerl ... AppServer9
» DBoD for databases
* CephFS for storage ==
» S3 for buckets
» Composed of:
e ~150k projects.
* 19k users.
e ~320k pipelines/month. defqult cephifs-a cephifs-b cephs-c cephfs-d
+ Collaborators from all over the

ootal Hd d B & O
» Almost all the software running our

complex infrastructure it is hosted on cepnes cepnrs cepnrs cepnes cepnes
GitLab

GitLab application servers

PgBouncer

—
=

IIl..

S3
(LFS,
artifacts,...)

27" Jun 2024 Maurizio De Giorgi | Solving PostgreSQL connection scalability: Insights from CERN'’s GitLab Service

Let’s start from the beginning...

Hi everyone, since yesterday evening at ~18:00 we are seeing massive spikes in our monitoring every six hours

Our logs contain a lot messages concering the database

FATAL: the database system is in recovery mode

This is what | see in the logs (a segmentation fault):

[2022-04-20 17:42:01.654 CEST][PID:174232][SID:62602728.2a898][DB:gitlab] ERROR: duplicate key value violates unique
constraint "namespace_aggregation_schedules_pkey"
[2022-04-20 17:42:01.654 CEST][PID:174232][SID:62602728.2a898][DB:gitlab] DETAIL: Key (namespace_id)=(2596) already exists.

[2022-04-20 17:42:01.654 CEST][PID:174232][SID:62602728.2a898][DB:gitlab] STATEMENT:
/*application:sidekiq, correlation_id:859511634175914922b6b8897T6Te5ee, jid:6b16e178b2ad13c24382108d, endpoint_id:Namespa

ces::ScheduleAggregationWorker,db_config_name:main*/ INSERT INTO "namespace_aggregation_schedules" ("namespace_id") VALUES

LRSS RET RN N e
[2022-04-20 17:44:03.294 CEST][PID:248934][SID:6225b284.3cc66][DB:] LOG: server process (PID 175064) was terminated by signa

11: Segmentation fault
[2022-04-20 17:44:03.294 CEST][PID:248934][SID:6225b284.3cc66][DB:] DETAIL: Failed process was running:

/*application:sidekiq, correlation_id:c5h36186837d2c4242792b840008c42b, jid:e5167a4aa0a294dd82a75173,
endpoint_id:LooseForeignKeys: :CleanupWorker,db_config_name:main*/ DELETE FROM "ci_pipelines" WHERE ("ci_pipelines"."id") IN
(SELECT "ci_pipelines"."id" FROM "ci_pipelines" WHERE "ci_pipelines"."merge_requ

CSt—id" IN (447386) LIMIT 1000 FOR UPDATE SKIP LOCKED) J

27" Jun 2024 Maurizio De Giorgi | Solving PostgreSQL connection scalability: Insights from CERN'’s GitLab Service

Agenda

An MVCC primer (boring things everyone knows but it is worth refreshing)

(ACID) Transactions, Isolation, Concurrency, Serializable Snapshot Isolation

Connection scalability (showing the problem and its causes)
Benchmarking & bottleneck analysis

Troubleshooting GitLab issues (talking about that time when we all had a lot of fun)
The journey to enlightenment
The joy of enlightenment

The great effects of connection pooling on connection scalability

27" Jun 2024 Maurizio De Giorgi | Solving PostgreSQL connection scalability: Insights from CERN'’s GitLab Service

An ACID Transaction

A set of operations that transfers a database from one
correct state to another correct state (Consistency),
provided they are all completed or rolled back
(Atomicity) without interference from other
transactions (/solation)

|seﬂ

ﬁj@ff‘ dé‘lete‘? mgg
@m | 27th Jun 2024 - Swiss PGDay Credits https://postgrespro.com/blog/pgsql/5967856
\

An ACID Transaction g

Committed transactions must be durable, and
withstand a system crash, without being affected by
uncommitted transactions, the effects of which, should
be rolled back as if they never happened (Durability)

|tted
actions
rward

Uncommitted
Transactions
Roll back

@N | 27th Jun 2024 - Swiss PGDay Credits https://postgrespro.com/blog/pgsql/5967856
\

(&

Transactions and Concurrency

What is the fundamental problem?

Providing concurrent data access and transaction
isolation for each database session, with reasonable
iIn a multi user environments, while
minimizing lock contention, so that reading never
blocks writing and writing never blocks reading

<c§m§i 27th Jun 2024 - Swiss PGDay Credits https://www.postgresql.org/docs/current/mvcc-intro.html
\

(&

Transactions and Concurrency

What is the more commonly used solution for RDBMS?
Multi Version Concurrency Control
“Instead of updating data objects in-place’,
each update creates a new version of that data object,
such that concurrent readers can still see the old version

while the update transaction proceeds concurrently<”

N 27th Jun 2024 - Swiss PGDay ' ...and store before images in rollback segments like oracle does
) 2 Credits Tobias Miihlbauer https:/db.in.tum.de/~muehlbau/papers/mvce.pdf 17

https://db.in.tum.de/~muehlbau/papers/mvcc.pdf

(&

Multi Version Concurrency Control

How does it work?
It relies on Serializable Snapshot Isolation™

Each SQL statement sees a snapshot of data (a
database version) as it was some time ago,
regardless of the current state of the underlying data,
and consisting only of changes committed before it
was created

N 27th Jun 2024 - Swiss PGDay 12009, Cahill, Mic
@ 22012, Dan R. K.

hael James http://hdl.handle.net/2123/5353
Ports, Kevin Grittner https:/arxiv.org/pdf/1208.4179.pdf 18

http://hdl.handle.net/2123/5353
https://arxiv.org/pdf/1208.4179.pdf

Multi Version Concurrency Control

(&

“All queries in PostgreSQL are performed with respect
to a snapshot, which is represented as the set of
transactions whose effects are visible in the snapshot.
Each tuple is tagged with the transaction ID of the
transaction that created it (xmin), and, if it has been
deleted or replaced with a new version, the
transaction that did so (xmax)”

@RN | 27th Jun 2024 - Swiss PGDay Credits Dan R. K. Ports, Kevin Grittner https://arxiv.org/pdf/1208.4179.pdf
\

https://arxiv.org/pdf/1208.4179.pdf

(&

Multi Version Concurrency Control

a) Transaction identifiers b) Transaction identifiers space as a circular
<« — =Y
— {o7—{(o8 @ 0010 (0203 -
Invisible \
g {0
Visible Invisible ey

T 2figo
Visible RV

2-1 H /

(o 27th Jun 2024 - Swiss PGDay Credits Hironobu SUZUKI@InterDB https://www.interdb.jp/pg/pasql05.html
\

https://www.interdb.jp/pg/pgsql05.html

Multi Version Concurrency Control

(&

tx command id
(starting from 0)

tuple id
itself or
new
version

txid
delete or update
or 0 (invalid)

apTupleHegderData
//\

t xmin |t xmax | t_cid t ctid |t infomask2|t infomask| t_hoff NULL bitmap User data

Peeking relevant fields inside a heap tuple header

o~ 27th Jun 2024 - Swiss PGDay Credits Hironobu SUZUKI@InterDB https://www.interdb.jp/pa/pasql05.html
\

S

https://www.interdb.jp/pg/pgsql05.html

Multi Version Concurrency Control

(&

Timev

T

T2
T3

T4

5

T6

T7

) . , initial tuple
t xmin t xmax t_cid t ctid userdata inserted by
: ' txid 199
txid = 200 Tuple_1 ‘ 199 0 0 (0,1) Jekyll
BEGIN; txid = 201
BEGIN;

SELCT * FROM tbl; SELCT * FROM tbl;
snapshot="200:200:" snapshot="200:200:"
UPDATE tbl SET data = 'Hyde"; t xmin t xmax t_cid t_ctid userdata

Tuple_1 199 200 0 (0,2) ‘Jekyll'
Tuple 2 | 200 0 0 (0,2) "Hyde'

SELCT * FROM tbl;
snapshot="200:200:"

SELCT * FROM tbl;
snapshot="200:200:"

COMMIT;

SELCT * FROM tbl;

snapshot =

201201

"200:200:”

if REA

if RER

D COMMITTED

EATABLE READ

CERN
\

27th Jun 2024 - Swiss PGDay

Credits Hironobu SUZUKI@InterDB https://www.interdb.jp/pa/pgsql05.html

https://www.interdb.jp/pg/pgsql05.html

Multi Version Concurrency Control

(&

. . initial tuple
t xmin t xmax t_cid t ctid userdata inserted by
bl 2 500 Tuple_1 ‘ 199 | 0 |0 | (01 "Jekyll txid 199
txid 200
T1 BEGIN; é starting) txid = 201
at.T1
T2 BEGIN;
T3 SELCT * FROM tbl; SELCT * FROM tbl;
snapshot="200:200:" snapshot="200:200:"
T4 UPDATE tbl SET data = 'Hyde"; t xmin t xmax t_cid t_ctid userdata
Tuple_1 | 199 200 | 0 | (0,2 ‘Jekyll'
Tuple 2 | 200 0 0 (0,2) 'Hyde'
T5 SELCT * FROM tbl; SELCT * FROM tbl;
snapshot="200:200:" snapshot="200:200:"
T6 COMMIT;
T7 SELCT * FROM tbl;
"201:201:" if READ COMMITTED
. snapshot =
Time "200:200:" if REREATABLE READ

o~ 27th Jun 2024 - Swiss PGDay Credits Hironobu SUZUKI@InterDB https://www.interdb.jp/pa/pgsql05.html
\

https://www.interdb.jp/pg/pgsql05.html

Multi Version Concurrency Control

(&

Timev

T

T2
T3

T4

5

T6

T7

) . , initial tuple
t xmin t xmax t_cid t ctid userdata inserted by
bl 2 500 Tuple_1 ’ 199 | 0 |0 | (01 "Jekyll txid 199
txid 200
BEGIN; starting) txid = 201 .
é ot T1 tid 201
BEGIN: starting
atT2
SELCT * FROM tbl; SELCT * FROM tbl;
snapshot="200:200:" snapshot="200:200:"
UPDATE tbl SET data = 'Hyde"; t xmin t xmax t_cid t_ctid userdata
Tuple 1| 199 | 200 | 0 | (0,2) Jekyll
Tuple_ 2 | 200 0 0| (0,2 "Hyde'

SELCT * FROM tbl;
snapshot="200:200:"

SELCT * FROM tbl;
snapshot="200:200:"

COMMIT;

SELCT * FROM tbl;

snapshot =

201201

"200:200:”

if REA

if RER

D COMMITTED

EATABLE READ

CERN
\

27th Jun 2024 - Swiss PGDay

Credits Hironobu SUZUKI@InterDB https://www.interdb.jp/pa/pgsql05.html

https://www.interdb.jp/pg/pgsql05.html

Multi Version Concurrency Control

(&

T

T2
T3

T4

t xmin t xmax t_cid t ctid userdata

txid = 200 Tuple_1 ‘ 199 0 0 0,1) "Jekyll'
BEGIN; txid = 201
BEGIN;
SELCT * FROM tbl; < txid SELCT * FROM tbl;
insert

snapshot="200:200:"

snapshot="200:200:"

UPDATE tbl SET data = 'Hyde';

tjxmin t xmax t_cid t ctid userdata

Tuple_ 1| 199 | 200 | 0 | (0,2) Jekyll'

Tuple 2 | 200 o (o] (02 "Hyde"

5

SELCT * FROM tbl;
snapshot="200:200:"

SELCT * FROM tbl;
snapshot="200:200:"

T6

COMMIT;

T7

Timev

SELCT * FROM tbl;

201201

snapshot =

"200:200:”

if REA

if RER

D COMMITTED

EATABLE READ

27th Jun 2024 - Swiss PGDay

Credits Hironobu SUZUKI@InterDB https://www.interdb.jp/pa/pgsql05.html

https://www.interdb.jp/pg/pgsql05.html

Multi Version Concurrency Control

(&

Timev

T

T2
T3

T4

5

T6

T7

t xmin t xmax t_cid t ctid userdata
txid = 200 Tuple_1 ‘ 199 0 0 (0,1) Jekyll

BEGIN; /txid\ txid = 201

delete or
update .
\ or 0.(invalid) / BEGIN;

SELCT * FROM tbl; < txid SELCT * FROM tbl;
snapshot="200:200:" insert snapshot="200:200:"
UPDATE tbl SET data = 'Hyde"; tjxmin t xmax t_cid t ctid userdata

Tuple_1 199 200 0 (0,2) ‘Jekyll'
Tuple 2 | 200 0 0 (0,2) "Hyde'

SELCT * FROM tbl;
snapshot="200:200:"

SELCT * FROM tbl;
snapshot="200:200:"

COMMIT;

SELCT * FROM tbl;

201201

snapshot =

"200:200:”

if REA

if RER

D COMMITTED

EATABLE READ

CERN
\

27th Jun 2024 - Swiss PGDay

Credits Hironobu SUZUKI@InterDB https://www.interdb.jp/pa/pgsql05.html

https://www.interdb.jp/pg/pgsql05.html

Multi Version Concurrency Control

(&

Timev

T

T2
T3

T4

5

T6

T7

t xmin t xmax t_cid t ctid userdata
txid = 200 Tuple_1 ‘ 199 0 0 (0,1) Jekyll
BEGIN; /txidWWM\ txid = 201
delete or id
update (starting ;
\ or.0 (invalid))kfrom 0) BEGIN;

SELCT * FROM tbl; < txid SELCT * FROM tbl;
snapshot="200:200:" insert snapshot="200:200:"
UPDATE tbl SET data = 'Hyde"; tjxmin t xmax t_cid t ctid userdata

Tuple_1 199 200 0 (0,2) ‘Jekyll'
Tuple 2 | 200 0 0 (0,2) "Hyde'

SELCT * FROM tbl;
snapshot="200:200:"

SELCT * FROM tbl;
snapshot="200:200:"

COMMIT;

SELCT * FROM tbl;

201201

snapshot =

"200:200:”

if REA

if RER

D COMMITTED

EATABLE READ

CERN
\

27th Jun 2024 - Swiss PGDay

Credits Hironobu SUZUKI@InterDB https://www.interdb.jp/pa/pgsql05.html

https://www.interdb.jp/pg/pgsql05.html

Multi Version Concurrency Control

(&

Timev

T

T2
T3

T4

5

T6

T7

t xmin t xmax t_cid t ctid userdata
txid = 200 Tuple_1 ’ 199 0 0 (0,1) Jekyll

BEGIN; /txidﬁ(ﬁmrm\ txid = 201

delete or

update (starting tuple id ;

\ or.0.(invalid))Kfrom O)/ |h:ra)alf or \ BEGIN;

SELCT * FROM tbl; < txid SELCT * FROM tbl;
snapshot="200:200:" insert version snapshot="200:200:"

UPDATE tbl SET data = 'Hyde';

X

t xmin t xmax t_cid t ctid userdata
Tuple_1 | 199 200 0 (0,2) ‘Jekyll'
Tuple_2 | 200 0 0 0,2) 'Hyde'

SELCT * FROM tbl;
snapshot="200:200:"

SELCT * FROM tbl;
snapshot="200:200:"

COMMIT;

SELCT * FROM tbl;

201201

snapshot =

"200:200:”

if REA

if RER

D COMMITTED

EATABLE READ

CERN
\

27th Jun 2024 - Swiss PGDay

Credits Hironobu SUZUKI@InterDB https://www.interdb.jp/pa/pgsql05.html

https://www.interdb.jp/pg/pgsql05.html

Multi Version Concurrency Control

(&

Timev

T

T2
T3

T4

5

T6

T7

txid = 200 txid 200

Tuple_1 ‘ 199

t xmin

t xmax t_cid

t ctid

0

0

(0,1)

user data

Jekyll ‘

initial tuple
inserted by
txid 199

BEGIN; { starting)
at.T1

txid = 201

txid 201

BEGIN; é

starting

SELCT * FROM tbl;
snapshot="200:200:"

Snapshot 200:200: <200 visible, >=200 invisible
They can both see Tuple_1 (t_xmin=199)

SELCT * FROM tbl;
snapshot="200:200:"

atT2

UPDATE tbl SET data = 'Hyde';

t xmin t xmax t_cid t ctid userdata
Tuple_1 | 199 200 0 (0,2) ‘Jekyll'
Tuple_2 | 200 0 0 0,2) 'Hyde'

SELCT * FROM tbl;
snapshot="200:200:"

SELCT * FROM tbl;
snapshot="200:200:"

COMMIT;

SELCT * FROM tbl;

snapshot =

201201

"200:200:”

if REA

if RER

D COMMITTED

EATABLE READ

CERN
\

27th Jun 2024 - Swiss PGDay

Credits Hironobu SUZUKI@InterDB https://www.interdb.jp/pa/pgsql05.html

https://www.interdb.jp/pg/pgsql05.html

Multi Version Concurrency Control

(&

Timev

T

T2
T3

T4

5

T6

T7

txid 201

) . . initial tuple
t xmin t xmax t_cid t ctid userdata inserted by
A Tuple_1 ‘ 199 | 0 ‘ 0| (01 "Jekyll ‘ txid 199
txid 200
BEGIN; é starting txid = 201
at T1
BEGIN; é

starting

SELCT * FROM tbl;
snapshot="200:200:"

Snapshot 200:200: <200 visible, >=200 invisible

They can both see Tuple_1 (t_xmin=199)

SELCT * FROM tbl;
snapshot="200:200:"

atT2

UPDATE tbl SET data = 'Hyde"; t xmin t xmax t_cid t_ctid userdata
make tuple_1 dead Tuple_1 | 199) Jekyll
insert new version as Tuple_2f 200 Hyde'
tuple_2

SELCT * FROM tb¥;
snapshot="200:200:"

SELCT * FROM tbl;
snapshot="200:200:"

COMMIT;

SELCT * FROM tbl;

snapshot = 1

(T201:201

"200:200:”

if REA

if RER

D COMMITTED

EATABLE READ

CERN
\

27th Jun 2024 - Swiss PGDay

Credits Hironobu SUZUKI@InterDB https://www.interdb.jp/pa/pgsql05.html

https://www.interdb.jp/pg/pgsql05.html

Multi Version Concurrency Control

(&

) . . initial tuple
t{(ﬁrfmn tﬁxmaf 7t7CId ,,tfftld, user data | inserted by
bl 2 500 Tuple_1 ‘ 199 | 0 ‘ 0| (01 ’ "Jekyll \ txid 199
txid 200
BEGIN; startin o :
" é A TH o = =0 txid 201
T BEGIN: starting
é at T2
T3 SELCT * FROM tbl; Snapshot 200:200: <200 visible, >=200 invisible SELCT * FROM tbl;
snapshot="200:200:" They can both see Tuple_1 (xmin=199) snapshot="200:200:"
T4 UPDATE tbl SET data = 'Hyde"; t xmin t xmax t_cid t_ctid userdata
make tuple_1 dead Tuple_1) Uekyll
insert new version as
Tuple 2 'Hyde'
tuple_2 Rilin L
T5 SELCT * FROM tbl; Same as before (200:200:) but SELCT * FROM tbl;
snapshot="200:200:" txid 200 can see Tuple_2 (visibility check rules'?) snapshot="200:200:"
T6 COMMIT;
T7 SELCT * FROM tbl;
("201:201:" if READ COMMITTED
Yy snapshot = |
Time | "200:200:" if REFEATABLE READ
o~ 27th Jun 2024 - Swiss PGDay ! https://www.interdb.jp/pa/pgsql05/06.html
\

2 https://www.interdb.jp/pa/pasql05/07 .html

31

https://www.interdb.jp/pg/pgsql05/06.html
https://www.interdb.jp/pg/pgsql05/07.html

Multi Version Concurrency Control

(&

Timev

T

T2
T3

T4

T5

T6

T7

txid = 200 txid 200

t xmin t xmax t_cid t ctid userdata

Tuple_1 ’7199 ’,,,70, ‘g’ (611) | dekyit |

initial tuple
inserted by
txid 199

BEGIN;

é starting)
at.T1

txid = 201

txid 201

BEGIN;

=

starting

SELCT * FROM tbl;
snapshot="200:200:"

Snapshot 200:200: <200 visible, >=200 invisible
They can both see Tuple_1 (xmin=199)

SELCT * FROM tbl;
snapshot="200:200:"

atT2

UPDATE tbl SET data = 'Hyde"; t xmin t xmax t_cid t_ctid userdata
make tuple_1 dead Tuple_1) Uekylr
insert new version as Tuple_2 Hyde'
tuple_2

SELCT * FROM tbl;
snapshot="200:200:"

Same as before (200:200:) but
txid 200 can see Tuple_2 (visibility check rules'?)

SELCT * FROM tbl;
snapshot="200:200:"

COMMIT;

txid 201 can see Tuple_2, or not,
depending on ISOLATION level
READ COMMITTED by default

SELCT * FROM tbl;

(7201201

snapshot =

| "200:200:”

if READ COMMITTED

if REREATABLE READ

CERN
\

27th Jun 2024 - Swiss PGDay

' https://www.interdb.jp/pa/pgsql05/06.html

2 https://www.interdb.jp/pa/pasql05/07 .html

32

https://www.interdb.jp/pg/pgsql05/06.html
https://www.interdb.jp/pg/pgsql05/07.html

(&

Multi Version Concurrency Control

(a) 100:100: : il]
past <~ @ @ @ @ @ @ @ 10 ;> future

(b) 100:104:100,102

-9 QOO OHB e .

// \\ ¥ M)
) Active txid:it is in progress or is not yet started, and is invisible.

\\\J/

Y
<) Inactive txid: it is committed or aborted, and is visible if committed.

27th Jun 2024 - Swiss PGDay Credits Hironobu SUZUKI@InterDB https://www.interdb.jp/pa/pgsql05.html

CERN
\

S

https://www.interdb.jp/pg/pgsql05.html

(&

Multi Version Concurrency Control

(a) 100:100: xid min:xid max:[xip_list]
o Q)@@ |00 o) 0203 o4 fo5— e
(b) 100:104:100,102 not active<xmin, active if in xmin<=xip_list<xmax, not yet started >=xmax

L future

\
|

™
\/) Active txid:it is in progress or is not yet started, and is invisible.

C Inactive txid: it is committed or aborted, and is visible if committed.

27th Jun 2024 - Swiss PGDay Credits Hironobu SUZUKI@InterDB https://www.interdb.jp/pa/pasql05.html

CERN
\

https://www.interdb.jp/pg/pgsql05.html

Agenda

(&

. An MVCC primer (boring things everyone knows but it is worth refreshing)

(ACID) Transactions, Isolation, Concurrency, Serializable Snapshot Isolation

Connection scalability (showing the problem and its causes)

Benchmarking & bottleneck analysis

Troubleshooting GitLab issues (talking about that time when we all had a lot of fun)
The journey to enlightenment
The joy of enlightenment

The great effects of connection pooling on connection scalability

G 27th Jun 2024 - Swiss PGDay
\

S

35

Connections scalability

Initialize pgbench data set

(&

initialize pgbench (from my desktop) on pg 12.13 port [

maurizio@pcitdbi4:~/pg_conn_scaling$ pgbench --host | cern-ch --port=|Jl] - -username=maurizio -i{--fillfactor=90 --scale=1000 Jhaurizio
Password:

dropping old tables...

NOTICE: table "pgbench_accounts” does not exist, skipping

NOTICE: table "pgbench_branches" does not exist, skipping

NOTICE: table "pgbench_history" does not exist, skipping

NOTICE: table "pgbench_tellers" does not exist, skipping

creating tables...

generating data (client-side)...

100000000 of 100000000 tuples (100%) done (elapsed 156.45 s, remaining 0.00 s)
vacuuming...

creating primary keys...

done in 454.22 s (drop tables 0.00 s, create tables 0.04 s, client-side generate 165.21 s, vacuum 162.68 s, primary keys 126.29 s).

G 27th Jun 2024 - Swiss PGDay %
\

Connections scalability

A simple 15t run with 20 pgbench clients, 1 thread, 100 trx/client

maurizio@pcitdbi4:~/pg_conn_scaling$ cat select_1.sql
SELECT 1

run pgbench (from my desktop) on pg 12.13 port i 3 =
-c 20 concurrent clients (ogTUsers) all e ing -t 100 transactions

with -C connections are closed aftg;zﬂVE?y transaction |

2000 connections open in tota

Password:
starting vacuum...e

transaction type: mdltiple scripts
scaling factor:

b F cutetiss g 46:20=2.3 tps/client
number of thrgads: 1
ions per client: 100

tps = 45.999934 (including conjections establishing)
tps 2
v

welght. argets 50.0% of total)
- 1001 transactions (50.0% of total, tps = 23.022967)
- latency average = 208.888 ms
- latency stddev = 123.035 ms
SQL script 2: select_1.sql
- weight: 1 (targets 50.0% of total)
- 999 transactions (50.0% of total, tps = 22.976967)
- latency average = 206.177 ms
- latency stddev = 122.094 ms

G 27th Jun 2024 - Swiss PGDay
\

37

Connections scalability

A simple 2" run with 100 pgbench clients, 4 threads, 100 trx/client

maurizio@pcitdbi4:~/pg_conn_scaling$ pgbench --host NN cern.ch --port=NEEE --username=maurizid
Password:

starting vacuum...end.

transaction type: multiple scripts

(&

-c 100 -j 4 -t 100} S maurizio -C -f select_1.sql

scaling factor: 1000 5 timeS more C|ientS
query mode: simple -
nunber of clients: 100 3.87 times more tpS

number of threads: 4

nunber of transactions per client: 100 1 781 00=1 78 tpS/Client

number g a0sa actually processed: 10000/10000
: VS

hetons estalizhig) 46:20=2.3 tps/client

elect only>

- wetght 1 (targets 50 0% of total)
- 4975 transactions (49.8% of total, tps
- latency average = 273.393 ms

- latency stddev = 159.781 ms

SQL script 2: select_1.sql

- weight: 1 (targets 50.0% of total)
- 5024 transactions (50.2% of total, tps
- latency average = 266.481 ms
- latency stddev = 158.058 ms

88.354651)

89.224878)

G 27th Jun 2024 - Swiss PGDay s
\

Connections scalability

(&

A tpcb-like run with 100 pgbench clients, 4 thr

maurizio@pcitdb14:~/pg_conn_scaling$ pgbench --host INEENMEEM.cern.ch --port=[NElM - -username=maurizig

Password:

starting vacuum...end.
transaction type: multiple scripts

scaling factor: 1600

query mode: simple

number of clients: 100

nunber of threads: 4

number of transactions per client: 100

number of transactions actually processed: 10000/10000
verage = 6
.576210 (including cd
luding cg

V m

173

tps ections establishing)
ections establishing)
8 ect only>
- weight: 1 (targets 50.0% of total)
- 4961 transactions (49.6% of total, tps = 86.111158)
- latency average = 92.202 ms
- latency stddev = 60.308 ms
SQL script 2: <builtin: TPC-B (sort of)>
- weight: 1 (targets 50.0% of total)
- 5039 transactions (50.4% of total, tps
- latency average = 812.450 ms
- latency stddev = 201.239 ms

87.465052)

-C 100 -j 4 -t 100y S maurizio

eads, 100 trx/client

-C -b tpcb-like

0.02 times less tps

174:100=1.74 tps/cl.
VS

178:100=1.78 tps/cl.

G 27th Jun 2024 - Swiss PGDay
\

39

Connections scalability

A tpcb-like run with 800 pgbench clients, 6 threads, 100 trx/client
maurmo@pc1tdb14 / pg_conn scahngs pgbench -host DD --port-HB - username:mauriz 100 -C -b tpcb-like

Password:
starting vacuun. . .end. 210:800=0.26 tps/cl.

transaction type: <builtin: TPC-B (sort of)> 3.8 sec avg latency!!!
scaling factor: 1000

query mode: simple

number of clients: 800

number of threads: 6

number of transactlons per clie

(&

\
re“‘e“"t
+ 84969/80090 d\y a“Y

hlng)
ylons establishing)

40

27th Jun 2024 - Swiss PGDay

Connections scalability

(&

What is the bottleneck?

9

@ 27th Jun 2024 - Swiss PGDay
\

(&

Connections scalability

What is the bottleneck?

“Postgres uses a process forking model to handle concurrency
instead of threading. When it accepts a new connection, the
Postmaster forks a new backend (in postmaster.c). Backends are
represented by the PGPROC structure (in proc.h), and the entire
set of active processes is tracked in shared memory”

Credits Brandur, https://brandur.org/postgres-atomicity#shared-memor

@ 27th Jun 2024 - Swiss PGDay

https://github.com/postgres/postgres/blob/b35006ecccf505d05fd77ce0c820943996ad7ee9/src/backend/postmaster/postmaster.c#L4014
https://github.com/postgres/postgres/blob/b35006ecccf505d05fd77ce0c820943996ad7ee9/src/include/storage/proc.h#L94
https://brandur.org/postgres-atomicity#shared-memory

Connections scalability

(&

What is the bottleneck?

Samples: 3K of event ‘cycles', Event count (approx.): 2146194646

Overhead

.41%
.40%
.39%
.38%
: For hierarchical output, try:

Command

postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres

Shared Object
postgres
postgres
postgres
postgres
postgres
[kernel.vmlinux]
postgres
[kernel.vmlinux]
[kernel.vmlinux]
postgres
[kernel.vmlinux]
postgres
postgres
postgres

[vdso]
[kernel.vmlinux]
libc-2.31.50
[kernel.vmlinux]
[kernel.vmlinux]
[kernel.vmlinux]
[kernel.vmlinux]
postgres
[kernel.vmlinux]
postgres

perf

Symbol

GetSnapshotData

hash search with hash value

bt compare
AllocSetAlloc
PostgresMain

_raw_spin lock irgsave
LWLockRelease

raw spin lock
mutex lock
LockReleaseAll
enqueue task fair
AllocSetFree
LWLockAcquire
heap hot search buffer
__vdso_gettimeofday
sock wfree

_strlen avx2
enqueue entity
pollwake

syscall return via sysret

skb release data

hash seq search
ksize

LockAcquireExtended

Profile of one active connection running read-only pgbench concurrently with 5000 idle connections

CERN
\

27th Jun 2024 - Swiss PGDay

Credits Andres Freund@MS http://cern.ch/go/9WRh

43

http://cern.ch/go/9WRh

(&

Connections scalability

AWhat is the bottleneck?

Samples: 3V ~% .- _at 'cycles', Event count (approx.): 2146194646
Overhead Cor-and Shared Object Symr_ ¢

postsris
rostan=s
D.stgres
pu tgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
p-stgres
P %5 es
pc tgi s
)0 gr_s
postgres
postgres
postgres
postgres
postgres

or hierarchical output, try:

pustgres
postgres
postgres
postgres
postgres
[kernel.vmlinux]
postgres
[kernel.vmlinux]
[kernel.vmlinux]
postgres
[kernel.vmlinux]
postgres
postgres
postgres

[vdsr!

flar, (.vmle

i - 31.sc

[k /ne..vmlinux]
Lkernel.vmlinux]
[kernel.vmlinux]
[kernel.vmlinux]
postgres
[kernel.vmlinux]
postgres

D ot s s e i O e it it A Rt it i i i i i Lt

perf

GetSnapshotData

nech search witl pash value

bt compare
AllocSetAlloc
PostgresMain

raw spin lock irgsave
LWLockRelease

raw spin lock
mutex lock
LockReleaseAll
enqueue task foir
AllocetFree
LWLoC Acr ur »

i€ |t cce ch b cer
Vv so0 je._.meofday
-k wfree

_strlen avx2
enqueue entity
pollwake

syscall return via sysret

skb release data

hash seq search
ksize

LockAcquireExtended

ort --hierarchy

Profile of one active connection running read-only pgbench concurrently with 5000 idle connections

27th Jun 2024 - Swiss PGDay

Credits Andres Freund@MS http://cern.ch/go/9WRh

http://cern.ch/go/9WRh

Connections scalability

typedef struct

{

(&

TransactionId /* all XID <are visible to me */
Transactionld /* all XID >+ @EmaYare invisible to me */

f*

/

* For normal MVCC snapshot this contains the all xact IDs that ap£'in The XIp array

* progress, unless the snapshot was taken during recovery jwhich case Conta_lns all the XlDS
running at the time

the snapshot was
taken

* it's empty. ...
* note: all ids in xip[] satisfy xmin <= xip[i] < xfax
o

TransactionIdCxip,)

uint32 X /* # of xact ids in xip[] */

G 27th Jun 2024 - Swiss PGDay
\

45

Connections scalability

7
* Prior to PostgreSQL 9.2, the fields below were stored as part of the

Every
connection
has one
PGXACT
entry in
allPgXact
array

* PGPROC. However, benchmarking revealed that packing these particular

* members into a separate array as tightly as possible sped up GetSnapshotData

* considerably on systems with many CPU cores, by reducing the number of

* cache lines needing to be fetched. Thus, think very carefully before adding

* anything else here.

*/

typedef struct
{
TransactionId /* id of top-level transaction currentl

* executed by this proc, if running and XID

keing

* is assigned; else InvalidTransactionid */

TransactionId /* minimal running XID as it was when we were

* starting our xact, excluding LAZY VACUUM:
* vacuum must not remove tuples deleted by

* xid >= xmin | */

uint8 vacuumFlags; /* vacuum-related flags, see above */
bool overflowed;
uint8 nxids;

} PGXACT;

27th Jun 2024 - Swiss PGDay

46

Connections scalability

(&

typedef struct PEOCArrayStruct
{

int numProcs; /* number of valid procs entries *

/* indexes intohas PROCARRAY MAXPROCS entries */

int pgprocnos[FLEXIBLE_ARRAY_MEMBER];

pgprocnos
sorted array of
all connections,
each item contains
the index to the
corresponding

} ProcArrayStruct;

Every backend is
represented by

PGXACT entry
struct PGPROC one PGPROC in the shared mem
{ _ entry allPgXact

in the shared mem

ProcArray

G 27th Jun 2024 - Swiss PGDay
\

S

47

Connections scalability

snapshot->takenDuringRecovery = RecoveryInProgress();

(&

if (!snapshot->takenDuringRecovery)

{
int apaprocnosIEETIEVIEE gp rocnosk

int numProcs;

/*
* Spin over procArray checking xid, xmin, and subxids. The goal 1is
* to gather all active xids, find the lowest xmin, and try to record
* subxids.
=

numProcs = arrayP->numProcs;

for (index = 0; index < numProcs; index++)

{

int pgprocno = [NTIRIEIR[index];
PGXACT *pgxact = &allPgXact[pgprocno];

TransactionId xid;

iterates over all entries in pgprocnos (ProcArray),
collecting PGXACT->xid for all connections with an assigned transaction ID

N 27th Jun 2024 - Swiss PGDay Credits Andres Freund@MS http://cern.ch/go/9WRh
\

N7

http://cern.ch/go/9WRh

Connections scalability

/*
* It is sufficient to get shared lock on ProcArrayLock, even if we are
* going to set MyPgXact->xmin.

*/

(&

LWLockAcquire(ProcArrayLock, LW SHARED),

o if (LWLockConditionalAcquire ProcArrayLock

* Add the specified PGPROC to the shared array.
* [ProcArrayEndTransactionInternal(proc, pgxact, latestXid
VoCa

‘:rocArrayAdd(’GPROC *proc)

ProcArrayStruct *arrayP = procArray;
int index;

LWLockAcquire(ProcArrayLock, LW _EXCLUSIVE)),

G 27th Jun 2024 - Swiss PGDay

N7

Agenda

(&

. An MVCC primer (boring things everyone knows but it is worth refreshing)
(ACID) Transactions, Isolation, Concurrency, Serializable Snapshot Isolation
Connection scalability (showing the problem and its causes)

Benchmarking & bottleneck analysis

Troubleshooting GitLab issues (talking about that time when we all had a lot of fun)

The journey to enlightenment

The joy of enlightenment

The great effects of connection pooling on connection scalability

G 27th Jun 2024 - Swiss PGDay
\

S

50

(&

Troubleshooting GitLab issues

Hi everyone, since yesterday evening at ~18:00 we are seeing massive spikes in our monitoring every six hours

Our logs contain a lot messages concering the database
log_min_messages=warning

FATAL: the database system is in recovery mode log_min_error_statement=error
log_min_duration_statement=10000
This is what | see in the logs (a segmentation fault): 1Og statement=all

[2022-04-20 17:42:01.654 CEST][PID:174232][SID:62602728.2a898][DB:gitlab] ERROR: duplicate key value violates unique

constraint "namespace_aggregation_schedules_pkey"
[2022-04-20 17:42:01.654 CEST][PID:174232][SID:62602728.2a898][DB:gitlab] DETAIL: Key (namespace_id)=(2596) already exists.

[2022-04-20 17:42:01.654 CEST][PID:174232][SID:62602728.2a898][DB:gitlab] STATEMENT:
/*application:sidekiq, correlation_id:859571634175914922b6b8897T6Te5ee, jid:6b16e178b2ad13c24382108d, endpoint_id:Namespa

ces::ScheduleAggregationWorker,db_config_name:main*/ INSERT INTO "namespace_aggregation_schedules" ("namespace_id") VALUES

P RO N
[2022-04-20 17:44:03.294 CEST][PID:248934][SID:6225b284.3cc66][DB:] LOG: server process (PID 175064) was terminated by signm

11: Segmentation fault
[2022-04-20 17:44:03.294 CEST][PID:248934][SID:6225b284.3cc66][DB:] DETAIL: Failed process was running:

/*application:sidekiq, correlation_id:c5h36186837d2c4242792b840008c42b, jid:e5167a4aa0a294dd82a75173,
endpoint_id:LooseForeignKeys: :CleanupWorker,db_config_name:main*/ DELETE FROM "ci_pipelines" WHERE ("ci_pipelines"."id") IN
(SELECT "ci_pipelines"."id" FROM "ci_pipelines" WHERE "ci_pipelines"."merge_requ

CSt_id" IN (447386) LIMIT 1000 FOR UPDATE SKIP LOCKED))

27th Jun 2024 - Swiss PGDay 51

Troubleshooting GitLab issues

@grade from pg 12.5 to pg 12.10 Jf the gitlab_ha cluster ZEdit Y7 OTG0070562

(&

Type: Planned Intervention Qp;Database on Demand Service

Begin: &8 Fri Apr 22, 2022 08:00 @Dataoase on Demand

End: & Fri Apr 22,2022 08:30 Servi Affected: Not Specified . q 9
DGR e Upgrading to latest major and/or minor
Last Updated: &8 Fri Apr 22, 2022 11:37 version that you can afford, depending on
Locations: Not Specified your circumstances, is a good practice to

deal with bugs and security fixes

Description:
Minor upgrade of PostgreSql from version 12.5 to 12.10 of the gitlab_ha cluster (gitlab 01 primary and gitlab 02 replica). The intervention is planned at a short notice in the attempt of solving

an issue started in the last 24h which§could potentially be caused by hitting a bug (some processes are terminated due to segmentation fault ~every 6h].'.vhile trying to complete a delete

operation associated with a trigger fU T r——"———

Communication plan:
The intervention was completed successfully but we will need monitoring the instance for some hours to check if the issues encountered are also solved.

Outage Number: OTG0070562 Created by: Maurizio De Giorgi
Creation Date: @ Thu Apr 21, 2022 20:30 Responsible Unit: IT-DB-DBR
Publication Scopes: SSB, Report Publication Type: Planned Intervention

Visibility: ® CERN

52

27th Jun 2024 - Swiss PGDay

Troubleshooting GitLab issues

(&

Maintenance operations and configuration improvements)equired on DBOD instance gitlab-01 #'Edit Y7 OTG0070655
Type: Planned Intervention @ Database on Demand Service

Begin: @ Wed Apr 27, 2022 18:00 @ Database on Demand

End: @ Wed Apr 27, 2022 22:00 Services Affected: Not Specified pg_stat_ [all |user]_tables:

spucts Depiaded last_[auto]vacuum, last_[auto]analyze,

Last Updated: & Thu Apr 28,2022 09:21
Locations: Not Specified

[auto]vacuum_count, [auto]analyze_count

Description:

Following up with analysis and observations after OTG0070562 it appears that somdlquery optimizer statistics are missing and some tables/indexes have never been vacuumed

thresholds resulting from current (default) settings (which do not seem adequate to 10 MdKe the ge

c
statistics for the query optimizer and the mitigation of the bloating of tables and indexes more "aggressive".
An overall vacuum analyse operation is required beforehand to make sure that the missing statistics are generated and the bloating is mitigated for all the tables/indexes.

ue to the high
hering of

Given the size of the database this operation can take some hours. The instance need to be briefly restarted at the beginning and at the end of the intervention to make the configuration

changes effective.

log_autovacuum_min_duration=0

Communication plan:

The intervention was completed successfully earlier than anticipated autovacuum_ [analyze | vacuum] _scale_factor=60.065

track_activity_query_size=4096

Outage Number: OTG0070655 Created by: Maurizio De Giorgi
Creation Date: & Wed Apr 27,2022 17:55 Responsible Unit: IT-DB-DBR
Publication Scopes: SSB, Report Publication Type: Planned Intervention

Visibility: @ CERN

27th Jun 2024 - Swiss PGDay

53

Troubleshooting GitLab issues
_ The first clues

hello guys, can you check if you have any evidence about anything happening around/between ~ 5:03-5:097?

(&

Hi Maurizio, there was indeed something happening then, and again exactly one hour late

log_[dis]connections=on
log_min_duration_statement=10000]|0
[log_duration=on]

Can you investigate what triggered such a big increase in connections to the db? The almost doubled in 1-2 min from 200@

Looking at postgresql logs there are occasional moments where new connections and queries (each one a new server back-end process forked) are piling up in less than 1-2

min and apparently kind of "overwhelming" the database parsing/bind/execute workflow. Most of the query reported in the logs are in the bind phase (not execute): the

problem is not a bad execution plan, the query are hanging there in the bind phase.

G 27th Jun 2024 - Swiss PGDay
\

54

Troubleshooting GitLab issues

Maintenance operations and configuration improvements)equired on DBOD instance gitlab-01 #'Edit

Type: Planned Intervention ‘:3’ Database on Demand Service
Begin: &8 Wed Apr 27,2022 18:00 @ Database on Demand
End: @ Wed Apr 27, 2022 22:00 Services Affected: Not Specified

Impact: Degraded
Last Updated: & Thu Apr 28,2022 09:21
Locations: Not Specified

Description:
Following up with anal
thresholds resuig

statistics for the
An overall vacuun
Given the size of th
changes effective.

ase this operation can take some hours. The instance need to be briefly restarted at the beginning and at the end of the intervention to make the config

0TG0070655

ue to the high

hering of

uration

Communteation lkn: pg_statio_all_indexes: idx_blks_read, idx_blks_hit
The intervention was completed successfully earlier than anticipated pg_stat_a 11 _indexes: idx_scan , last_idx_scan

Outage Number: OTG0070655 Created by: Maurizio De Giorgi

Creation Date: & Wed Apr 27,2022 17:55 Responsible Unit: IT-DB-DBR

Publication Scopes: SSB, Report Publication Type: Planned Intervention

Visibility: @ CERN

27th Jun 2024 - Swiss PGDay

55

Troubleshooting GitLab issues

Maintenance operations and configuration improvements)equired on DBOD instance gitlab-01 #'Edit OTG0070655
Type: Planned Intervention ‘:3’ Database on Demand Service

Begin: & Wed Apr 27,2022 18:00 @ Database on Demand

End: @ Wed Apr 27, 2022 22:00 Services Affected: Not Specified

Impact: Degraded

Last Updated: & Thu Apr 28,2022 09:21

Locations: Not Specified

Description:

Following up with analygs \0 Cappears that somdlquery optimizer statistics are missing and some tables/indexes have never been vacuumed gue to the high

thresholds resuigs ich do not seem adequate to 10 MaKe the gathering of

statistics for the oating of tables and indexes more "aggressive".

An overall vacuun milag missing statistics are generated and the bloating is mitigated for all the tables/indexes.

e
Given the size of th ase this Upgrade OTG quefy and i”Creased "———imaiog at the beginning and at the end of the intervention to make the configuration
changes effective. d /etc le s . the mMemg -
dtabase € Migration m; Y- I think je

Communication plan Th pe’forman o0 m’ght e)(pect Could be he[p I

2) t u
The intervention was completed it m'ght also be th be tr'ggered in th mentlonlng thls in th

Source for the ® backgroyng , ® next
increase jn ¢ Nd could affe
e data » +,. Ctth

Outage Number: OTG0070655 Created by: Maurizio De Giorgi 2%
Creation Date: & Wed Apr 27,2022 17:55 Responsible Unit: IT-DB-DBR
Publication Scopes: SSB, Report Publication Type: Planned Intervention
Visibility: @ CERN

56

27th Jun 2024 - Swiss PGDay

Troubleshooting GitLab issues

of
= (es‘a(‘.
Maintenance operations and configuration improvements)equired on DBOD instance gitlab-01 # Edit e ne jv OTGO070655
asn©

- use
Type: Planned Intervention I:A Database on Demand Service \oeeﬂ
Begin: & Wed Apr 27,2022 18:00 @ Database on Demand e (\e\'e(0(.('\“
End: @ Wed Apr 27, 2022 22:00 Services Affected: Not Specified N “a\l aC(\O“S
Impact: Degraded \N“\ P\

POy a\’\\i ¥
Last Updated: & Thu Apr 28, 2022 09:21 are o iy wne
Locations: Not Specified (e y a'\\'\e
o T e
e(,a ne
es aw
ader ee
oo e \ 5\ n

Description: ut wn \]'\OU
Following up with anal O Cappears that somdlquery optimizer statisi and some tables/indexes have never been vacuumed due to the high

thresholds resuigs ich do not seem adequate tothe atd SiZe). 1hese Settlngs need to De chaliged to Make the gathering of

statistics forthe § 2 S @ alloating of tables and indexes more 4
7 o daﬂ - Checked —

An overall vacuuny N g SOme que

Given the size of th ase this { Upgrade oT Y and in

changes effective. G/Etc i.e, som

ma

s 1iSSing Fgenerated and the bloating is mitigated for all the tables/indexes.

e at the beginning and at the end of the intervention to make the configuration

database perf,
Communication plan: Th)
The intervention was completed & m'ghf alsg

Outage Number: OTG0070655 Creed by: Maurizio De Giorgi
Creation Date: & Wed Apr 27,2022 17:55 Responsible Unit: IT-DB-DB
Publication Scopes: SSB, Report Publication Type: Planned fhtervention
Visibility: @ CERN

27th Jun 2024 - Swiss PGDay ' https://docs.gitlab.com/ee/administration/reference_architectures/index.html

Troubleshooting GitLab issues

of
= ‘esia(‘.
Maintenance operations and configuration improvements)equired on DBOD instance gitlab-01 # Edit e ne jv OTGO070655
3 on©
W e
Type: Planned Intervention ‘:3’ Database on Demand Service ee“
Begin: & Wed Apr 27,2022 18:00 @ Database on Demand e\'e (_C\“
End: @ Wed Apr 27, 2022 22:00 Services Affected: Not Specified N aC(\O“S
Impact: Degraded o W o
Last Updated: & Thu Apr 28, 2022 09:21 e ma iy \N\’\eﬂ
Locations: Not Specified ‘_\'\e(e ‘_a'\\“e
c
5 w e o
e o~

Description:
Following up with
thresholds resuig

dauery optimizer statisi

= IS thae for 25k g

- =
statistics for the
An overall vacuun
Given the size of th
changes 4

SUggesy;

Commu
The interven

Pmpleted

Outage Number: OTG0070655
Creation Date: ﬁ Wed Apr 27, 2022 17:55
Publication Scopes: SSB, Report

Creed by: Maurizio De Giorgi
Responsible Unit: IT-DB-DBR
Publication Type: Planned Intervention

and some tables/indd

Ngto USea

}: vacuumed

N 4
)3 /

. b

ue to the high

hering of

. . e S)e
Rlgating is mitigated for all the tables/indexes.
sagf the intervention to make the configuration

Con)
nectmn =
/ng

his in the next
d couly affect the

Visibility: @ CERN

27th Jun 2024 - Swiss PGDay

58

Troubleshooting GitLab issues

Maintenance operations and configuration improvements)equired on DBOD instance gitlab-01 #'Edit

jv OTG0070655

Type: Planned Intervention ‘:3’ Database on Demand Service
Begin: & Wed Apr 27,2022 18:00 @ Database on Demand

End: & Wed Apr 27,2022 22:00 Services Affected: Not Specified
Impact: Degraded

Last Updated: & Thu Apr 28,2022 09:21 /
Locations: Not Specified ‘_\'\ef A

o) (
thanks o508 410 |
* ONe po; L ne® /
Description: com Nen Int of - F

Following up withams P entiOI) is t dquery optimizer statisy / never been vacuumed que to the high
thresholds resui PR unCerl _ hat oy ~=ravay- (D e T RS TS A thering of

St““m“l{o”h it could make sense to test it ASAP as there might be a chance that with the connection pooling a 200+
An overall vacyl

Given the size § CONNections increase is more manageable and do not result in overwhelming the database nfiguration

changes effective: 2, Co \
Communication plan: ‘ . .

The intervention was completed

Outage Number: OTG0070655 Creed by: Maurizio De Giorgi
Creation Date: & Wed Apr 27,2022 17:55 Responsible Unit: IT-DB-DBR

Publication Scopes: SSB, Report Publication Type: Planned Intervention
Visibility: @ CERN

59

27th Jun 2024 - Swiss PGDay

O
Troubleshooting GitLab issues =

ok of
Maintenance operations and configuration improvements)equired on DBOD instance gitlab-01 #'Edit e ne ¢ jv OTGO070655
asn©
e

Type: Planned Intervention I:A Database on Demand Service \oeeﬂ s
Begin: & Wed Apr 27,2022 18:00 @ Database on Demand e (\e\'e(0(.('\“
End: @ Wed Apr 27, 2022 22:00 Services Affected: Not Specified N “a\l aC(\O“S
Impact: Degraded W (a\'\S
= N § 3"\\J AN v
Last Updated: @ Thu Apr 28, 2022 09:21 (e o \N\’\
A . e? el
Locations: Not Specified '(.he(,\‘,\‘a\\'\ oV
e
tha becau‘—' o€ L ¢ cen® fnat
ks, One oxe° need 3 g/‘oou“ nes
] ; a
Description: Compo”e pO[,—,t Ofatl‘) (o\l\de PRETa L
Following up with 3™ nt (pro e'7170n is ¢ - W g_\ s\ oW (s\8) m ue to the high
thresholds resui ASY UDCQ,-, A hat frs. . oY e al B e pathering of
\d

statistics forth it could make sense to test it ASAP 3

nection pooling a 200+
An overall vacu

Given the size d CONNections increase j rErwhelming the database nfiguration

v =
changes effectiV S COnn »

per "° N might €Ction e,
Communicatio em cnas eXpect ¢ Ooljn
S a0 Y . O DeTm g
The intervention 555 his in
d the next
couy

Outage Number: OT®# 70655 Creed by: Maurizio De Giorgi ~dited
Creation Date: & Wed Apr 27,2022 17:55 Responsible Unit: IT-DB-DBR
Publication Scopes: SSB, Report Publication Type: Planned Intervention
Visibility: @ CERN

60

27th Jun 2024 - Swiss PGDay

Troubleshooting GitLab issues

—
- "

Maintenance operations and configuration improvements)equired on DBOD instance gitlab-01 #'Edit OTG0070655

Type: Planned Intervention I:A Database on Demand Service
Begin: &8 Wed Apr 27,2022 18:00 @ Database on Demand
End: @ Wed Apr 27,2022 22:00 Services Affected: Not Specified

Impact: Degraded
Last Updated: & Thu Apr 28, 2022 09:21
Locations: Not Specified

Description:
Following up with atm our offer is based on pgpool ue to the high
thresholds resy aiee Sathering of

statistics forthl i+ q|d it is worth testing pgpool

An overall vacyl

connef if it is not useful | guess we can start a discussion to evaluate other options

changes effective:

Given the size nfiguration

(perhaps in the meantime you can also TEST running pgbouncer on your own?) & tdited
= CAPCCT (0 be v m
his in
th
ource for tha iNCreacy : i € next
dse in the data - d affect the

Communicatiol
The intervention

Outage Number: O Creded by: Maurizio De Giorgi R
Creation Date: & Wed Apr 27,2022 17:55 Responsible Unit: IT-DB-DBR

Publication Scopes: SSB, Report Publication Type: Planned Intervention

Visibility: @ CERN

27th Jun 2024 - Swiss PGDay

61

Troubleshooting GitLab issues

of
R ‘esia(‘.
Maintenance operations and configuration improvements)equired on DBOD instance gitlab-01 # Edit e ne jv OTGO070655
39
- use
Type: Planned Intervention @ Database on Demand Service \oeeﬂ
Begin: @ Wed Apr 27, 2022 18:00 @ Database on Demand e\'e(OCC\“
End: @ Wed Apr 27,2022 22:00 Services Affected: Not Specified N na aC(\O“S
Impact: Degraded N W o
. 3t i : an A
Last Updated: @ Thu Apr 28, 2022 09:21 (e A\ \N\’\
Locations: Not Specified \'\e(e e .La'\\“ed fof
use v 2\ wralVy
thanks, o poun® ~ gnes ™
» ONa . 8- ant
Description: CoOmp. Point (o] r(N‘de P 3 00“"

—
- "

Following up with
thresholds resyjgg
statistics forthq i+ could it is worth testing

An overall vacuyl o
Given the size 4 connef if it is not useful |

changes effective:

atm our offer is bg

ussion to evaluate other options

(perhapsinthe

T running pgbouncer on your own?) & Edited

Communicat?o ‘—(\E“ 2uC > - PECT to e - i
The intervention . 10 S 558¢€
ath \t -
\\c- ” ((oﬂ“ — w,
2pP 4 nefit — fOr the in¢,
€asej
couV €in the data -
Outage Number: OT®# 70655 Creed by: Maurizio De Giorgi il
Creation Date: & Wed Apr 27,2022 17:55 Responsible Unit: IT-DB-DBR
Publication Scopes: SSB, Report Publication Type: Planned Intervention

ue to the high

eaeerne Pathering of

h 200+

nfiguration

his in the next

d couylq affect the

Visibility: @ CERN

27th Jun 2024 - Swiss PGDay

62

Troubleshooting GitLab issues

—
- "

of
= (es‘a(‘.
Maintenance operations and configuration improvements)equired on DBOD instance gitlab-01 # Edit e ne jv OTG0070655
39
- use
Type: Planned Intervention I:A Database on Demand Service \oee“
Begin: & Wed Apr 27,2022 18:00 @ Database on Demand (\e\'e(0(.('\“
End: & Wed Apr 27,2022 22:00 Services Affected: Not Specified n na ad\o\‘\‘:
Impact: Degraded o \N“\ RE
Last Updated: & Thu Apr 28, 2022 09:21 e e iy \N\’\e“
Locations: Not ™ tag (e \ne \{
W, ce ne “_3 3 2\ £
ell, th cav e cent
pgb ' Is GItLeb di Sbe ed(Ob ce o () ‘.\‘\a
oy ICtam; ; B ant
Description: Jf ¢ is f Ncer, Do not Mmin tes th ¢ m\,\dep ooﬁ.

Ni I) 0 ; /2 i
fo[lox ing u- St (/ets % resee ok Ve o ue Eo the high
thresholds resi g . a . est int rt to eaeerne Pathering of
R ey) D i
statistics for th i+ could it is Ve Wy g Ort te pgbOunCe h 200+
An overall vacul » gests Us ¢, rm unfo r, so i
Given the size d connef if it is not useful | gue 0 do Mtungy, = wiguration

. f in f
ha ffective: . 5 0,
crangss e (perhaps in the meantime you can als8 Ve to Alleyig, I'Sthg will b
e
Communicatiol < the preSS
The intervention L axd ~ Uf‘e i
apPi® "N the next
ou
cov) 'd affect the

Creded by: Maurizio De Giorgi bl
Responsible Unit: IT-DB-DBR
Publication Type: Planned Intervention

Outage Number: OT## /70655
Creation Date: ﬁ Wed Apr 27, 2022 17:55
Publication Scopes: SSB, Report

Visibility: @ CERN

27th Jun 2024 - Swiss PGDay

63

(((34

Troubleshooting GitLab issues
Back to square one... looking for a culprit

[2022-09-26 16:03:36.187 CEST][PID:163179][SID:6331b104.27d6b][DB:] LOG: automatic analyze of table "gitlab.public.project_authorizations" system

usage: CPU: user: 0.35 s, system: 0.44 s, elapsed: 47.54 s

[2022-09-26 16:04:06.221 CEST][PID:163566][SID:6331b14f.27eee][DB:] LOG: automatic analyze of table "gitlab.public.namespaces" system usage: CPU:
user: 0.50 s, system: 0.06 s, elapsed: 5.82 s

[2022-09-26 16:04:11.891 CEST][PID:163602][SID:6331b150.27f12][DB:gitlab] LOG: duration: 10063.487 ms bind <unnamed>:
[*application:web,correlation_id:01GDX1S9VENZ19H288EKTR10R5,db_config_name:main*/

{ € General / PostgreSQL Monitoring v <3

& General / PostgreSQL Monitoring vy <3

itrac5418.cern.ch v instance gitlab_01 v

Backend Processes per database

log_autovacuum_min_duration=0

autovacuum_[analyze|vacuum]_scale_factor=0.01
autovacuum_freeze_max_age=10000000
track_activity_query_size=4096

2022-09-26 15:07:00
= admin: 25

= dod_dbmon: /
= gitlab:
g 2/ 2022-09-26 15:07:00

- postgres: 0
1 lobal: 14:55 15:00 15:05 T o2
postgres_global: = 5 min: 8.53
template0: =15 min: 6.30

templatel: = # of CPUs: 64

27th Jun 2024 - Swiss PGDay 64

CERN
\\

(((34

Troubleshooting GitLab issues
Back to square one... looking for a culprit

[2022-09-26 16:03:36.187 CEST][PID:163179][SID:6331b104.27d6b][DB:] LOG: automatic analyze of table "gitlab.public.project_authorizations" system

usage: CPU: user: 0.35 s, system: 0.44 s, elapsed: 47.54 s

[2022-09-26 16:04:06.221 CEST][PID:163566][SID:6331b14f.27eee][DB:] LOG: automatic analyze of table "gitlab.public.namespaces" system usage: CPU:
user: 0.50 s, system: 0.06 s, elapsed: 5.82 s

[2022-09-26 16:04:11.891 CEST][PID:163602][SID:6331b150.27f12][DB:gitlab] LOG: duration: 10063.487 ms bind <unnamed>:
[*application:web,correlation_id:01GDX1S9VENZ19H288EKTR10R5,db_config_name:main*/

{ € General / PostgreSQL Monitoring v <3

& General / PostgreSQL Monitoring vy <3

itrac5418.cern.ch v instance gitlab_01 v

Backend Processes per database

log_lock_waits=on sessions blocked for >=deadlock_timeout=1000ms
Found multiple sessions blocking each other (for more

than 1s) mostly trying to execute UPDATEs on the same
table recorded during some spikes

2022-09-26 15:07:00
= admin: 25

= dod_dbmon: /
= gitlab:
g 2/ 2022-09-26 15:07:00

- postgres: 0
1 lobal: 14:55 15:00 15:05 T o2
postgres_global: = 5 min: 8.53
template0: =15 min: 6.30

templatel: = # of CPUs: 64

27th Jun 2024 - Swiss PGDay 65

CERN
\\

Troubleshooting GitLab issues

(&

[2022-09-26 16:03:36
usage: CPU: user: 0..
[2022-09-26 16:04:06
user: 0.50 s, system:
[2022-09-26 16:04:11
[*application:web,corr

& General / PostgreSQL Mg

r itrac5418.cern.ch v inst

G 27th Jun 2024 - Swiss PGDay
\

S

Autovacuum workers generally don't block other commands. If a process

attempts to acquire a lock that conflicts with SHARE UPDATE EXCLUSIVE held itions" system
by autovacuum, it will interrupt the autovacuum. For conflicting lock modes, see
Table 13.2. in PG docs but to clarify:

item usage: CPU:

> SELECT need ACCESS SHARE,
o SELECT FOR UPDATE/SHARE need ROW SHARE,
UPDATE, DELETE, and INSERT need ROW EXCLUSIVE

none of the above conflict with SHARE UPDATE EXCLUSIVE
However, if the autovacuum is running to prevent transaction |[D wraparound, the
autovacuum is not interrupted (it can cause issue but should not be frequent and
wraparound would be much worse).
Warning: Regularly running commands that acquire locks conflicting with a

SHARE UPDATE EXCLUSIVE lock (e.g., ANALYZE) can effectively prevent o

autovacuums from ever completing.

Troubleshooting GitLab issues
Back to square one... looking for a culprit

(((ﬂ%

[2022-09-26 16:03:36.187 CEST][PID:163179][SID:6331b104.27d6b][DB:] LOG: automatic analyze of table "gitlab.public.project_authorizations" system
usage: CPU: user: 0.35 s, system: 0.44 s, elapsed: 47.54 s

[2022-09-26 16:04:06.221 CEST][PID:163566][SID:6331b14f.27eee][DB:] LOG: e moun™: ¥ table "gitlab.public.namespaces" system usage: CPU:
user: 0.50 s, system: 0.06 s, elapsed: 5.82 s _cewith the
[2022-09-26 16:04:11.891 CEST][PID:163602][SID:6 T datal® e
[*application:web,correlation_id:01GDX1 ~_gerthat L onfig_name:main*/

& General / PostgreSQL Monitorina_4 _ oryerd na e (GO 131 € General / PostgreSQL Monitoring v =3

150
serve|

Backend Processes per database

fio --randrepeat=1 --ioengine=1ibaio --direct=1 --gtod_reduce=1 --name=test --bs=4k --iodepth=64 --readwrite=randrw
--rwmixread=75 --size=4G --filename=/path/to/git-data/testfile

Database host
Run status group @ (all jobs):
READ: bw=194MiB/s (203MB/s), 194MiB/s-194MiB/s (263MB/s-203MB/s), i10=3068MiB (3217MB), run=15831-15831msec
WRITE: bw=64.9MiB/s (68.1MB/s), 64.9MiB/s-64.9MiB/s (68.1MB/s-68.1MB/s), i0=1028MiB (1078MB), run=15831-15831msec

NFS host
Run status group @ (all jobs):
READ: bw=256MiB/s (268MB/s), 256MiB/s-256MiB/s (268MB/s-268MB/s), i10=3068MiB (3217MB), run=11998-11998msec
WRITE: bw=85.7MiB/s (89.8MB/s), 85.7MiB/s-85.7MiB/s (89.8MB/s-89.8MB/s), i0=1028MiB (1078MB), run=11998-11998msec

templatel: —# of CPUs: 64

N 27th Jun 2024 - SwiSsPGBays fio benchmarking: https://docs.gitlab.com/ee/administration/operations/filesystem_benchmarking.html o
\

N7

Troubleshooting GitLab issues

Back to square one... looking for a culprit

—\
[2022-09-26 16:03:36.187 CEST][PID:163179][SID:6331b104.27d6b][DB:] LOG: automatic analyze of table "gitlab.public.project_authorizatior=
usage: CPU: user: 0.35 s, system: 0.44 s, elapsed: 47.54 s

[2022-09-26 16:04:06.221 CEST][PID:163566][SID:6331b14f. 27eee][DB] LO
user: 0.50 s, system: 0.06 s, elapsed: 5.82 s

[2022-09-26 16:04:11.891 CEST][PID:163602][SID:6
[*application:web,correlation_id:01GDX1S9

& General / PostgreSQL Monitorina._#

ame-test --bs=4k --iodepth=64 --readwrite=randrw

B75), 194MiB/s-194MiB/s (203MB/s-203MB/s), 10=3068MiB (3217MB), run=15831-15831msec
(68.1MB/S), 64.9MiB/s-64.OMiB/s (68.1MB/s-68.1MB/s), i0-1028MiB (1078MB), run=15831-15831msec

Run status group @ (all jobs):

READ: bw=256MiB/s (268MB/s), 256MiB/s-256MiB/s (268MB/s-268MB/s), i10=3068MiB (3217MB)
WRITE: bw=85.7MiB/s (89.8MB/s), 85.7MiB/s-85.7MiB/s (89.8MB/s-89.8MB/s),

, run=11998-11998msec
i0=1028MiB (1078MB), run=11998-11998msec

templatel: 0

G 27th Jun 2024 - SwiSsPEDbs

N7

- of CPUs: 64

fio benchmarking: https://docs.gitlab.com/ee/administration/operations/filesystem_benchmarking.html

) 27th Jun 2024 - Swiss PGDay

N2

Troubleshoo

tlng

General
al /
PostgreSQL Monit
itoring 1r

gitial

G i * -—
T
cebruay 28

ow fo
february 23

(&

CERN g\t\an supef slow
februa®y 14

or onty me?

s low |

December 13, 2022

me?

Nove\\\hev 24, 2022

0400

CERN
\\
S

27th J
un 2024 - Swiss PG
[)23)/

70

Troubleshooting GitLab issues

... triggering further attempts of mitigation

General / PostgreSQL Monitoring v <
itrac5418.cern.ch v gitlab_01 v

Backend Processes per database

I am going to change the following parameters (current values in

work_mem = 16M # 8M

maintenance_work_mem = 256M # 64M
log_lock_waits = on # off
autovacuum_vacuum_cost_ ay = 5 ms # 2 ms
autovacuum_vacuum_scale_factor = 0.005 # 0.01

if that is okay .
i addition to what | already mentione
doubling the work_mem to improve sorting

increasing to 5ms from 2ms auto vac uming cost_delay

halving the auto vacuuming scale factor (should trigger vacu
vy . NUTAYY

0000 0600 0800 0830

) 27th Jun 2024 - Swiss PGDay

Troubleshooting GitLab issues

...based on lateral measures

General / PostgreSQL Monitoring v <

itrac5418.cem.ch v gitlab_01 v

Backend Processes per database

I am going to change the following parameters (current values in

work_mem = 16M # 8M
maintenance_work_mem = 256M # 64
log_lock_waits = on # of L. .)
autovacuum_vacuum_cost_delay = 5 ms # 2 e Maurizio De Giorgi
autovacuum_vacuum_scale_factor = 0.005 # 0.0 .
@ increasing memory and resource consumption

if that is okay . : A I ¥
instead of using a connection pooling is a short
i addition to what | already mentioned:

doubling the work_mem to improve sorting term workaround solution which it is going to

increasing to 5ms from 2ms auto vacuuming cost_delay

become increasingly difficult to adopt in the

halving the auto vacuuming scale factor (should trigger vacu

longer term

Ismael Posada Trobo 01 AM

Yep, | agree with this, but either we increase

this, or we start using pgbouncer .

P

G 27th Jun 2024 - Swiss PGDay

72

Troubleshooting GitLab issues

...awareness started to come back

General / PostgreSQL Monitoring v <

itrac5418.cem.ch v gitlab_01 v

Backend Processes per database

I am going to change the following parameters (current values in

work_mem = 16M # 8M
maintenance_work_mem = 256M # 64
log_lock_waits = on # of L. .)
autovacuum_vacuum_cost_delay = 5 ms # 2 e Maurizio De Giorgi
autovacuum_vacuum_scale_factor = 0.005 # 0.0 .
@ increasing memory and resource consumption

if that is okay . : A I ¥
instead of using a connection pooling is a short
i addition to what | already mentioned:

doubling the work_mem to improve sorting term workaround solution which it is going to

increasing to 5ms from 2ms auto vacuuming cost_delay

become increasingly difficult to adopt in the

halving the auto vacuuming scale factor (should trigger vacu

longer term

Ismael Posada Trobo

P

G 27th Jun 2024 - Swiss PGDay

73

Troubleshooting GitLab issues

...but with more diagnostic activit

General / PostgreSQL Monitoring v <

h~

itrac5418.cern.

gitlab_01 v

if that is okay .

i addition to what | already mentioned:

doubling the work_mem to improve sorting

increasing to 5ms from 2ms auto vacuuming cost_delay

I am going to change the following parameters (current values in

work_mem = 16M # 8M
maintenance_work_mem = 256M # 64
log_lock_waits = on # of
autovacuum_vacuum_cost_delay = 5 ms # 2
autovacuum_vacuum_scale_factor = 0.005 # 0.

halving the auto vacuuming scale factor (should trigger vacu

while
ps

Backend Processes per database

hea
sle
done

Maurizio De Giorgi

increasing memory and resou

true; do date;

--ppid 12345 \

-0 pid, ppid, state, start, time, cmd, %mem, %cpu \
--sort=-%cpu, state | \

d -n 21;

ep 2;

>> gitlab_processes.log

instead of using a connection pooling
term workaround solution which it is
become increasingly difficult to adop

longer term

Ismael Posada Trobo

B ——
\ X
SELECT pid AS process_id,
client_addr AS client_address,
application_name,
state,
backend_start,
state_change,
now() - query_start AS query_age,
now() - xact_start AS
transaction_age,
backend_type

wait_event_type,
wait_event
FROM pg_stat_activity;
\watch 10

G 27th Jun 2024 - Swiss PGDay

74

Troubleshooting GitLab issues

General / PostgreSQL Monitoring ¥r <2

itrac5418.cem.ch v gitlab_01 v

Backend Processes per database

I am going to change the following parameters (current values in

work_mem = 16M # 8M
maintenance_work_mem = 256M # 64
log_lock_waits = on # of L. .)
autovacuum_vacuum_cost_delay = 5 ms # 2 Maurizio De GlOl’gl
autovacuum_vacuum_scale_factor = 0.005 # 0.0 .
@ increasing memory g 5
if that is okay . instead of 3 T \\ g c

i addition to what | already mentioned: 3 .,_\,«_,\3\
Q3™

doubling the work_mem to improve sorting e A% S

Which itis

increasing to 5ms from 2ms auto vacuuming cost_delay

Gly difficult to adop

halving the auto vacuuming scale factor (should trigger vacu

Ismael Posada Trobo 01 AM

Yep, | agrga

adm

... also came more FUDs

while true; do date;
ps --ppid 12345 \

fmem, %cpu \

\ X
SELECT pid AS process_id,
client_addr AS client_address,
application_name,
state,
backend_start,
state_change,
now() - query_start AS query_age,
now() - xact_start AS
transaction_age,
backend_type
wait_event_type,
wait_event
FROM pg_stat_activity;
\watch 10

G 27th Jun 2024 - Swiss PGDay
\

75

Troubleshooting GitLab issues
...which we had to analyze

based on the test conducted together, consisting in tracing a psql session where some SQL statements

where executed, it was ascertained that the syscalls listed below are quite normal and simply an indication

I am going to change the following parameters fl of the way the backend process communicate on the socket established with the client to receive data or

statements to execute. In summary, when the client is idle the recvfrom will get an EAGAIN and thus the
work_mem = 16M

maintenance_work_mem = 256M
log_lock_waits = on
autovacuum_vacuum_cost_delay = 5 ms
autovacuum_vacuum_scale_factor 0.00¢

backend process will start waiting (epoll_wait) until awaken when more data is available.
_

epoll_wait(3, [{EPOLLIN, {u32=29307368, u64=29307368}}], 1, -1) = 1
recvfrom(10, "\27\3\3\0\346", 5, 0, NULL, NULL) =5

recvfrom(10, "\333\0055\250\212\354@&r4>B\306\364\217\22\363\264-\2\320\311\367d\"\31
\272t\301"..., 230, ©, NULL, NULL) = 230

sendto(10,

"\27\3\3\0) | P\261\370\261\222<\332E\333\226b#\"\242R\346\25\252\264\2166Gx\210\24\212u
46, 0, NULL, 0) = 46

recvfrom(10, Oxibfa6e3, 5, ©, NULL, NULL) = -1 EAGAIN (Resource temporarily unavailab
epoll_wait(3, [{EPOLLIN, {u32=29307368, u64=29307368}}], 1, -1) =1

recvfrom(10, "\27\3\3\1\321", 5, @, NULL, NULL) =5

recvfrom(10,

"\333\0055\250\212\354@"'HN\306\27\21; \377RZ&\317\356w\267\242 1 \3\213\254\26 ' X18". ..,
O, NULL, NULL) = 465

We also managed to noticed in another terminal with the top command, how the backend process was
switching from the R state (while executing CPU work) to the D state (while waiting for |10 to be completed)
and eventually to the S state (while idle and waiting).

In the light of these results, we can still try to trace some processes to collect evidences but we can exclude
there is any evidence of anomalies in the traces above.

2230 0 |

admin == dod postgre

G 27th Jun 2024 - Swiss PGDay
\

76

Troubleshooting GitLab issues

... explain and clarify

based on the test conducted together, consisting in tracing a psqgl session where some SQL statements

stgreSQL Monitoring ¢ =3

where executed, it was ascertained that the syscalls listed below are quite normal and simply an indicatio

I am going to change the following parameters @ of the way the backend process communicate on the socket established with the client to receive data or

statements to execute. In summary, when the client is idle the recvfrom will get an EAGAIN and thus the
work_mem = 16M

maintenance work_mem = 256M backend process will start waiting (epoll_wait) until awaken when more data is available.

log_lock_waits = on
autovacuum_vacuum_cost_delay = 5 ms
autovacuum_vacuum_scale_factor = 0.0¢

epoll_wait(3, [{EPOLLIN, {u32=29307368, u64=29307368}}], 1, -1) = 1
recvfrom(10, "\27\3\3\0\346", 5, O, NULL, NULL) = 5
recvfrom(10, "\333\0055\250\212\354@&r4>B\306\364\217\22\363\264-\2\320\311\367d\"\31

find why the ' autova \272t\301"..., 230, ©, NULL, NULL) = 230

na wny the (autovacuum waor

! iy e p autovacuum wo sendto(10,

follow up GitLab indications /;:j:.qr‘ernif‘g fll "\27\3\3\0) |P\261\370\261\222<\332E\333\226b#\"\242R\346\25\252\264\2166x\210\24\212u

46, 0, NULL, @) = 46

|recvfrom(10, Ox1bfa6e3, 5, 0, NULL, NULL) = -1 EAGAIN [Resource temporarily unavailab
epoll_wait(3, [{EPOLLIN, {u32=29307368, u64=293073683}}], 1, -1) = 1

recvfrom(10, "\27\3\3\1\321", 5, ©, NULL, NULL) = 5

recvfrom(10,

"\333\0055\250\212\354@"'HN\306\27\21; \377RZ&\317\356w\267\242 !\3\213\254\26 ' X18". ..,
0, NULL, NULL) = 465

and eventually to the S state (while idle and waiting).

In the light of these results, we can still try to trace some processes to collect evidences but we can exclude

there is any evidence of anomalies in the traces above.

1

G 27th Jun 2024 - Swiss PGDay
\

postgres=# select

pg_backend pid();

pg_backend pid
2018909

(1 row)

strace -p 2018909

77

Troubleshooting GitLab issues

...while improving evervthino

basethsn the test conducted together, consisting in tracing a psql session where some SQL statements

where execubsq, it was ascertained that the syscalls listed below are quite normal and simply an indication
of the way the badend process communicate on the socket established with the client to receive data or

General / PostgreSQL Monitoring

I am going to change the following parameters

work mem = 16M statements to execulR. In summary, when the client is idle the recvfrom will get an EAGAIN and thus the
maintenance work_mem = 256M backend process will styrt waiting (epoll_wait) until awaken when more data is available.
log_lock_waits = on
autovacuum_vacuum_cost_delay = 5 ms || ©Pollwait(3, [{EPONLIN, {u32=29307368, u64=29307368}}], 1, -1) = 1
autovacuum vacuum scale factor = 0.odl recvfrom(10, "\27\3\§\0\346", 5, 0, NULL, NULL) = 5

recvfrom(10, "\333\00%5\250\212\354@&r4>B\306\364\217\22\363\264-\2\320\311\367d\"\31

If'- d why the ' bosteres: autovacuum worl 27261301"..., 230, O,\N
INnag wny the postgres: autovacuum wot sendto(10, 1og_temp_files=<work_mem> }
follow up GitLab indications concerning I "\27\3\3\0) | P\261\370\26 25%\264\2166x\210\24\212u

46, 0, NULL, 0) = 46
recvfrom(10, Oxibfa6e3, 5, ©, NULL, NULL) = -1 EAGAIN (Resource YemporafSo. after our discussion yesterday, let's put the following in place Today.

Increasing to Sms from Zms auto vacuuming g

halving the auto vacuuming scale factor (should

epoll_wait(3, [{EPOLLIN, {u32=29307368, u64=29307368}}], 1,
recvfrom(10, "\27\3\3\1\321", 5, @, NULL, NULL) = 5
recvfrom(10,

"\333\0055\250\212\354@"'HN\306\27\21;\377RZ&\317\356w\267\242 ' \3\21§\ 25|
@, NULL, NULL) = 465

Total RAM=100GB
shared_buffers=25GB
work_mem=64MB
effective_cache_size=70GB

Reason behind:

Total RAM: 100GB, so an increase of 20GB as per the explanation given J
| « shared_buffers : to accomodate to a 25% of total RAM.

We also managed to noticed in another terminal with the top command,_how the backend
switching from the R state (while executing CPU work) to the D state (while waiting for 10

e work_mem will allow us sorting in cache rather than in disk for those ~1k {
and eventually to the S state (while idle and waiting).

45490176 (bytes), hence the next binary number in MBis 64 .

In the light of these results, we can still try to trace some processes to collect evidences biujf ® effective cache_size will tell PG how much memory for caching it has|
. g ; 70% of RAM

there is any evidence of anomalies in the traces above. . to a 70% of RAM)

' I —_—

adm " s

G 27th Jun 2024 - Swiss PGDay
\

Troubleshooting GitLab issues

.until one day everythinc

based on the test conducted together, consisting in tracing a psql session where some SQL statements

was clear!

I am going to change the following parameters

where executed, it was ascertained that the syscalls listed below are quite normal and simply an indication
of the way the backend process communicate on the socket established with the client to receive data or

work_mem 16M
maintenance_work_mem =
log_lock_waits = on
autovacuum_vacuum_cost_delay = 5 ms

256M

epoll_wait(3,

statements to execute. In summary, when the client is idle the recvfrom will get an EAGAIN and thus the

backend process will start waiting (epoll_wait) until awaken when more data is available.

[{EPOLLIN, {u32=29307368, u64=29307368}1}],

1, -1) 1

recvfrom(
recvfrom(

autovacuum_vacuum_scale_factor 0.00

find why the " postg autovacuum wor 22\l
’ / - o - o) sendto(10

follow up GitLab indications concerning i "\27\3\3\
46, 0, nuf

Increasing to Sms from Zms auto vacuuming g recvfrom(

epoll_wai
recvfrom(
recvfrom(
"\333\005
0, NULL,

halving the auto vacuuming scale factor (should

We also managed to noticed

January 12

PM

Maurizio De Giorgi 1:50
@ Hi Isma.e_l_, all good thanks, is that for

\

—
seminal wit e top command _how the backen

switching from the R state (while executing CPU work) to the D state (while waiting for 10

and eventually to the S state (while idle and waiting).

367d\"\31

1 0\24\212u

ter our discussion yesterday, let's put the following in place Today.

al RAM=100GB
red_buffers=25GB
Bk_mem=64MB
ective_cache_size=70GB

bn behind:

btal RAM: 100GB , so an increase of 20GB as per the explanation given

e shared_buffers : to accomodate to a 25% of total RAM.

e work_mem will allow us sorting in cache rather than in disk for those ~1k {
45490176 (bytes), hence the next binary number in MBis 64 .

) 2 00 00 s 1

min == dod o tore tgres_globa

27th Jun 2024 - Swiss PGDay

CERN
\

In the light of these results, we can still try to trace some processes to collect evidences by
there is any evidence of anomalies in the traces above. #

e effective _cache_size will tell PG how much memory for caching it has|
to a 70% of RAM)

79

Troubleshooting GitLab issues
and the connection pooling

tgreSQL Monitoring & <@ o a - - ~
PSRN, based on the test conducted together, consisting in ‘. \cing a psql session where some SQL statements
-

(&

started!

where executed, it was ascertained that the syscall’ list >d below are quite normal and simpl an indication

I am going to change the following parameters @ of the way the b. ¢..~nd process communicate on ' he so. ket established with the client *J 7 2ceive data or
-

_—
statements to exevute. 1> summary, when the cli :nt is idle the recvfrom will get ar cAGA N and thus the
work_mem = 16M

maintenance work_mem = 256M backend process wil. start wa.‘ing (epoll_wait) u 1til awaken when more data ‘. availab) 2.
log_lock_waits = on

autovacuum_vacuum_cost_dels: = 5 ms epoll_wait(3, [{EFILLIN, {u3. 29307768, u64=29367368}37, 1, -1) = L
autovacuum_vacuum_scale_factor - 0.wv recvfrom(l I
1 recvrivs January 12 Sera\nat
!
. . \272t\301 c
find why the " postgres: autovacuum wot senctn(10 M e DE Gi . e one unchained the rest of the D states)
: . o 2 . - aurizio De Giorgi 1:50 PV
follow up GitLab indications concerning lif "\27\3\s s [\9\24\212“
. . 46, 0, NU @ Hilsmael, all good thanks, is that for
INCTEasing t0 DMS TToM 2MS SUto vacuuming col . ecvrrom(5 g ¥ ter uu: -~ ~=inn vesterday, let's put the following in place Today.
halving the auto vacuumir~ ~z_1_ Jactor (shouli epoll wai pgbou ncer? e GAVEAAER
‘ /‘\ “‘ i) L oIEram(—w_wurTers=25GB
/ £ - s .
cecvrian] Ismael Posada Trobo 1:50 P\ forencam
"\333\0", ~tive_cache_size=70GB
0, "wLL, Yes indeed b

: s winAM: - f lanati]
W- ..y managed 10 Notic .d in anoWﬂnal With Lhe op mand how e W By O Increase of (AR} as per.the explanation given ;

e shared_buffers -on._ ate to a 25% of total RAM.

switching from the R sta e (while exec.ing Ci'U work) to the I/ state ‘while waiting 'or IOt) | 0 o0 ow us sorting In cache rather than in disk for those ~1k |

and eventually to the © state (whi'_ idle and we iting). 45490176 (bytes), hence the next binary number in MB is 64 .

In the light of these “esults, . can still try to tre e some pr ocesses to collect e ‘idences DU © effective cache size will tell PG how much memory for caching it has
to a 70% of RAM)

there is any evider.ce o” anomalies in the traces ¢ bove. #

b 1

adm " s

G 27th Jun 2024 - Swiss PGDay
\

80

Agenda

(&

. An MVCC primer (boring things everyone knows but it is worth refreshing)
(ACID) Transactions, Isolation, Concurrency, Serializable Snapshot Isolation
Connection scalability (showing the problem and its causes)
Benchmarking & bottleneck analysis
Troubleshooting GitLab issues (talking about that time when we all had a lot of fun)

The journey to enlightenment

[. The joy of enlightenment J

The great effects of connection pooling on connection scalability

81

G 27th Jun 2024 - Swiss PGDay
\

S

Troubleshooting GitLab issues

(&

GitLab database performance improvement "Edit ¢ OTG0075691

Type: Plann it Service

Begin: i Wed Feb 08, 2023 17:30 @ve:swon Control Systems

End: & Wed Feb 08, 2023 18:30 Services Affected: Continuous Integration with Jenkins,
Impact: D@gmdid GitLab Pages Service, GRID Development Service, Software
Last Updated: B Wed Feb 08, 2023 19:03 Component Repository

Locations: Not Specified

Description:
A new major performance improvement for the database system used by GitLab will be put in place next Wednesday 08th Feb, aiming at improving scalability, reduce resource consumption

no / i R A

tween GitLab and the underline database. This intervention will

inject a transaction pooling mechanism at the application level between the GitLab infrastructure and the database system|

There is no outage foreseen while the intervention is taking place, however due to the criticality of the change, there can be some initial slowness until the infrastructure catches up with the
change. GitLab infrastructure will be monitored conscientiously during the intervention.

[Update 18:30] After verification from both GitLab infrastructure and DBoD Team, intervention is over . GitLab application and infrastructure is performing well for the time being, according to

the plan.

Outage Number: 0TG0075691 Created by: Ismael Posada Trobo
Creation Date: i Wed Feb 01,2023 09:44 Responsible Unit: IT-PW-WA
Publication Scopes: SSB, Report Publication Type: Planned Intervention

Visibility: @ CERN

82

27th Jun 2024 - Swiss PGDay

;N

Qa

Troubleshooting GitL

-

- e

Type: Planned T e

¢ OTG0075691

Begin: =
End: & Wed
Impact:
Last Updated:
Locations: Not

GitLab database performance i@{dit

or

Component Repository

Description:

Anewm ajor per formance im P

nent for the -

by GitLab wi

J of miticatino the known perform

utin place

and make 1

between the GitLab inias. o2*7= and the datat

o ou e fo

0 ore there c=
itLab infrastr

cation from both GitLab infrastructure and DBoD Team, interventior ',

[Update 18:30] After
th

veri

GitLab application and in

plan

@

@
@

Ismael Posada Trobo

Well well, 1 need a beer, certainly. I'm just taking screenshots of the graphs for a future presentation, this is

Maurizio De Giorgi

same &8
Ismael Posada Trobo 7:

Backend Proce

s per database

I'm mpressed, wow

Outage Number: OT
Creation Date: i |
Publication Scopes: SSB, Report
Visibility: ® CERN

Created by: Ismae! "o

09:44 Responsible Uwit: IT-P

Publication Type: Planned In ention

27th Jun 2024 - Swiss PGDay

CERN
\

8.

Troubleshooting GitLab issues
What is PgBouncer?

A lightweight connection pooler for PostgreSQL
e “near” the application and/or “near” the database

PgBouncer modes:

All writes

Application's side

e Transaction:

Creates a new connection for each transaction,

returning the connection to the pool when the

transaction is complete, break some features ' Database server's side
e Statement:

Multi-statement transactions disallowed, enforce

“autocommit” mode on the client, mostly targeted at

PL/Proxy DBoD Main

(primary)

27th Jun 2024 - Swiss PGDay 1 https://www.pgbouncer.org/features.html 84

Troubleshooting GitLab issues

Implementation and integration

PgBouncer Helm Chart

e Some existing implementations, but none of them are official nor supported by
GitLab.

Created our own
Contribution to GitLab

e Add CERN pgbouncer chart support (&39) - Epics - charts - GitLab
e Document how to integrate GitLab chart and CERN PGBouncer chart (#5527) -

Issues - GitLab.org / charts / GitLab Chart - GitLab
e License and maintenance issues

“Click-and-go” for Kubernetes (Incl. monitoring)

GitLab at CERN integration

e Puma (app server) and Sidekiq (job dispatcher) going through PgBouncer
e Migrations not going through PgBouncer to avoid long-running transactions.
e 3 replicas (one per AVZ)

@ 27th Jun 2024 - Swiss PGDay
\

https://gitlab.com/groups/gitlab-org/charts/-/epics/39
https://gitlab.com/gitlab-org/charts/gitlab/-/issues/5527
https://gitlab.com/gitlab-org/charts/gitlab/-/issues/5527

Troubleshooting GitLab issues

Reserve pool size 18x3 = 54 (total max pool size 336)
Default pool size 94x3 = 282

. .
17:00 18:00 19:00 20:00 21:00 2200 23:00 00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00
gitlab == postg postgres._globa plateC la

@ 27th Jun 2024 - Swiss PGDay

Troubleshooting GitLab issues

) 27th Jun 2024 - Swiss PGDay

7%

Troubleshooting GitLab issues

@ 27th Jun 2024 - Swiss PGDay
\\._/

Troubleshooting GitLab issues

& General / PostgreSQL Monitoring % <

cern.ch v gitlab_01 v

Transactions per Second

Commit gitlab

mmit dod_dbmon

Commit admin
Rollback dod_dbmon

Rollback mautest

27th Jun 2024 - Swiss PGDay

i 5

2000 21:00 2200 230 0 0100 0200 0300 04:00 05:00 06:00 O7:0X

6985c-16tw == gitiabigitiab-pghx 5509 = gitiab;gitiab-pgbouncer-7d39698

~ General

Client active connections gitiab Current conn on DB Database pool size Databases database reserve pool s

420 54

Pgbouncer pools connections (per pod) Pgbouncer pools connections (total)

i
‘ M g
LY LA
M A “MVJ ‘“"’L‘Aw; /",/J'N U,Jv \ My
Vi

500

o

A
A A A AN '
\WIVY w\‘ V r\n" yiTy ’VL‘(“ AN

Ma A
V [U‘V‘KV‘,"

A A e

PRTSOITTON PTG VPTG WY PTITOF MR WO W W i

17:00 0 19:00 2000 21:00 22:00 23:00 00:00 01:00 O 03:00 04:00

00:00 01:00 02:00 0 00 06:00 0 10:00 00 120 0 15:00

tiab,gitiab-pgbouncer. 985dc-16tnw: Client active connections - Total Client active

- Total waiting connections
uncer Total Server active connections
cer-7d896985dc-16tnw: Client waiting conn = Total Server idle connections
dc-t5599: Client walting conn — Total Server used connections
uncer-7d826885dc-58pfm: Client waiting connections = Total Server testing connections
bouncer-7dB96985dc-16tnw: Server active connections == Total Server login connections

985dc-15599: Server active connections Total Daf

) 27th Jun 2024 - Swiss PGDay

Troubleshooting GitLab issues

Backend Processes per database

0
00:00 02:00 04:00 06:00 08:00 10:00 12:00

== admin == dod_dbmon == gitlab == postgres postgres_global template0 template1

27th Jun 2024 - Swiss PGDay

Troubleshooting GitLab issues

& General / PostgreSQL PgBouncer ¥ <@

Pgbouncer pools connections (total)

2023-02-28 18:07:37

2023-02-28 07:56:00
== Total Client active connections 314
== Total Client waiting connections

| L \ Iy Ecee i W |
JLJLMMJM,JLMMJ\J 1 LM I MLHJU\J MJLJ ﬂM“quuwww y ‘%PW fﬂ

» A
oI WU LA oy

e SR e 0 wd\j_ul

02/27 22:00 02/28 00:00 02/28 02:00 02/28 04:00 02/28 06:00 02/28 0 02/28 12:(02/28 14:00 02/28 16:00 02/28 18:00

Total Client active connections 395 789
Total Client waiting connections 0

Total Server active connections

224
0.00416
0.102

Total Database current connections 307

27th Jun 2024 - Swiss PGDay

Pgbouncer pools connections (total)

Troubleshooting GitLab issues
Throttling and Rate limits

Misuse and/or abuse from some users: Too many request — Error 429

e Infinite loops hammering the API: Set rate limit for regs/sec
e Huge number of jobs triggered simultaneously: Rate limit for the maximum number of jobs triggered per
project

Use response headers to make your scripts smarter

Errors and redirects HTTP regs/sec

I | l
” f | l ‘ |
}! I [. | r“ " \ | | ‘ [. \‘
. \ / J ~
| P | I A | L) N |
01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00

G 27th Jun 2024 - Swiss PGDay

N7

94

https://docs.gitlab.com/ee/user/gitlab_com/#gitlabcom-specific-rate-limits
https://docs.gitlab.com/ee/user/admin_area/settings/user_and_ip_rate_limits.html#response-headers

Troubleshooting GitLab issues

Percentage of http requests served in less 2.5 seconds

Final settings:

min_pool_size:100 X3=300
default_pool_size:140 x3=420
reserve_pool_size:18 x3= 54
total max pool size =474

) 27th Jun 2024 - Swiss PGDay
\\

N2

Agenda

(&

. An MVCC primer (boring things everyone knows but it is worth refreshing)
(ACID) Transactions, Isolation, Concurrency, Serializable Snapshot Isolation
Connection scalability (showing the problem and its causes)
Benchmarking & bottleneck analysis
Troubleshooting GitLab issues (talking about that time when we all had a lot of fun)
The journey to enlightenment

The joy of enlightenment

[. The great effects of connection pooling on connection scalability J

G 27th Jun 2024 - Swiss PGDay o6
\

S

Connections scalability

A tpcb-like run with 800 pgbench clients, 6 threads, 100 trx/client
maurmo@pc1tdb14 / pg_conn scahngs pgbench -host D --port-HB - username:mauriz 100 -C -b tpcb-like

Password:
starting vacuun. . .end. 210:800=0.26 tps/cl.

transaction type: <builtin: TPC-B (sort of)> 3.8 sec avg latency!!!
scaling factor: 1000

query mode: simple

number of clients: 800

number of threads: 6

number of transactlons per clie

(&

\
re“‘e“"t
+ 80969/80090 d\y a“Y

hlng)
ylons establishing)

97

27th Jun 2024 - Swiss PGDay

Effects of connection pooling

PG12 w/ pgpouncer 1st time

(&

maurizio@pcitdb14:~/pg_conn_scaling$ pgbench --host localhost --port:_--username:maurizio -c 800 -j 6 -t 100 -C -b tpcb-like
starting vacuum...end.

transaction type: <builtin: TPC-B (sort of)>

scaling factor: 1000 .

query r?mde: simple 3305:800=4.10 tps/cllent

number of clients: 800 VS

number of threads: 6

number of transactions per client: 100 210:800=0.26 tpS/Client
tually processed: 80000/80000

latency average = 257.108

tps = 3111.535230 (includin
3126.871198 (excludj

connections establishing)
connections establishing)

PG12 w/ pgpouncer 2nd time

maurizio@pcitdbi14:~/pg_conn_scaling$ pgbench --host localhost --port=---username:maurizio -Cc 800 -j 6 -t 100 -C -b tpcb-like
starting vacuum...end.

transaction type: <builtin: TPC-B (sort of)>
scaling factor: 1000

query mode: simple . . .
nunber of clients: 800 Highest tps during tests 4-5000 (caching?)
number of threads: 6

number of transactions per client: 100

transactio tually processed: 80000/80000

latency average = 242.078
tps 3304.718357 (including) connections establishing)
tp 3319.453293 (excludj#g connections establishing)

N 27th Jun 2024 - Swiss PGDay
\

98

Removing the bottleneck

(&

Improved snapshot scalability in PG14

Before & After Throughput Comparison (read-only pgbench workload)

2,000,000
1,750,000
1,500,000
1,250,000
v
Q. 1,000,000
750,000
500,000
250,000
ol
1 10 100 1000 4000
Connection Count (log scale)
~-TPS pre ~®=TPS post . . .
Azure Fs72v2, 72 vCPUs, best of three runs Before & After Companson4c;f th(.e Performan.ce Impact of Idle Connections:
active connections
1,200,000
Co—o ® ® ®
1,000,000
800,000
"d
Q. 600,000
=
400,000
200,000
0
0 2000 4000 6000 8000 10000
. . . . ~-TPSpre -TPS post Idle Connections
s but con neC‘“On pOO“ng IS St|” needed readonly pgbench, scale 200, -M prepared -T30, best of three

(o 27th Jun 2024 - Swiss PGDay Credits http://cern.ch/go/9WRh Andres Freund@MS o
{

http://cern.ch/go/9WRh

(&

Client side connection pooling: fast

PgBouncer is a well known, flexible, reputable connection pooling software for
PostgreSQL with a small footprint, which has been around for a long time

Application owners can setup PgBouncer on their side ("near” the
application) to establish a connection pooling layer when accessing the
database with a significant number of connections or when the connections are
often and suddenly going up and down by a significant number

@ 27th Jun 2024 - Swiss PGDay

100

Client side connection pooling: config

YN

N

pgbouncer:

enabled: true $)
gfile: /dev/stdout

replicaCount
deployment: auth_type: scram-sha-256
strategy: auth_file: /etc/pgbouncer/userlist.txt
type: RollingUpdate # Console ac
rollingUpdate: admin_users:

maxUnavailable: 1 stats_users:

terminationGracePeriodSeconds: \62e &
Pool settings
nodeSelector:

B e o wol_mode: transaction
node-role.kubernetes.io/infra: P — 3 ;

podAnnotations: # Log settings
Added to scrape pgbouncer metrics log_connections: 8
gitlab.com/prometheus_scrape: “true" log_disconnections: @
gitlab.com/prometheus_port: "9127" log_pcc.'_e,-_ep‘.-e,-sj .|

gitlab.com/prometheus_path: "/metrics"

log stats: 1
antiAffinity: "hard" &

verbose: @

resources: x
limits: ¥ Needed for pgbouncer-exporter
cpu: "1" ignore_startup_parameters: extra float_digits ‘
requests: min_pool_size: 21 “““a“v
cpu: "1" default_pool_size: 94
memory : 4eMi reserve_pool_size: 18
pgbouncer configuration

reserve_pool_timeout: 2
databases: A :
max_db_connections: 980

gitlab: g
1ax_us t : 998
host: max_user_connections B
port: max_client_conn: 2848

N
pgbojfincerExporter:
ehabled: true
xtraknv:
- name: PGBOUNCER_PORT
value: "IN
- name: PGBOUNCER_USER
value: "N’
extratnvFrom:
- name: PGBOUNCER_PWD
valueFrom:
secretKeyRef:
name: gitlab-dbod-credentizl

key: gitlab-passwd

optional: false

min_pool size:21 x3= 63
default_pool _size:94 x3=282
reserve_pool size:18 x3= 54
total max pool size =336

min_pool_size:100 Xx3=300
default_pool size:140 x3=420
reserve_pool_size:18 x3= 54
total max pool size =474

27th Jun 2022~ Swisé PGDay

101

(&

Client side connection pooling: auth

PgBouncer secure authentication in DBOD
There are different ways to authenticate users in PgBouncer including:

e authentication query returning the password hash
e authentication file with known roles and their password (clear text/hash)

Superuser access to pg_shadow table would be required to get the hash

Secure auth setup: restricted login role + user_lookup function returning the
password hash (filtering privileged and special users)

@ 27th Jun 2024 - Swiss PGDay

102

Client side connection pooling: auth

(&

1 CREATE ROLE secure_auth_login LOGIN;
2 \password secure_auth_login <******>

3 -- run on each db pgbouncer will be connecting to, also on templatel to deploy it on any new db created
4 \c <database>
5 -- remove all from secure_auth_login on public schema

6 REVOKE ALL PRIVILEGES ON ALL TABLES IN SCHEMA public FROM secure_auth_login;

7 REVOKE ALL PRIVILEGES ON ALL SEQUENCES IN SCHEMA public FROM secure_auth_login;

8 REVOKE ALL PRIVILEGES ON ALL FUNCTIONS IN SCHEMA public FROM secure_auth_login;

9 REVOKE ALL PRIVILEGES ON SCHEMA public FROM secure_auth_login;

10 ALTER DEFAULT PRIVILEGES IN SCHEMA public REVOKE ALL ON SEQUENCES FROM secure_auth_login;
11 ALTER DEFAULT PRIVILEGES IN SCHEMA public REVOKE ALL ON TABLES FROM secure_auth_login;

12 ALTER DEFAULT PRIVILEGES IN SCHEMA public REVOKE ALL ON FUNCTIONS FROM secure_auth_login;
13 -- create nologin objects owner with access to pg_shadow

14 DROP OWNED BY secure_auth; -- to cleanup when re-running, will not remove objects in other db
15 DROP ROLE IF EXISTS secure_auth; -- to cleanup when re-running

16 CREATE ROLE secure_auth NOLOGIN;

17 CREATE SCHEMA secure_auth AUTHORIZATION secure_auth;

18 GRANT SELECT on pg_catalog.pg_shadow TO secure_auth;

pg_hba.conf
hostssl all secure_auth_login all scram-sha-256

103

27th Jun 2024 - Swiss PGDay

Client side connection pooling: auth

(&

19 -- function encabgalating-ti\é—privileged query—returning the password hash
20 CREATE OR REPLACE FUNCTION secure_auth.user_lookup(in i_username text, out uname text, out phash text)
21 RETURNS record AS S$$

22 BEGIN

23 SELECT usename, passwd FROM pg_catalog.pg_shadow
24 WHERE usename = i_username

25 AND NOT (usesuper OR userepl OR usebypassrls)

26 INTO uname, phash;

27 RETURN;

28 END;

29 $$ LANGUAGE plpgsql

30 SECURITY DEFINER

31 SET search_path = pg_catalog, pg_temp;

32 -- without the SET clause or with SET pg_catalog

33 -- the function could be subverted by creating a temporary table named pg_shadow

34 ALTER FUNCTION secure_auth.user_lookup OWNER TO secure_auth;

35 REVOKE ALL ON FUNCTION secure_auth.user_lookup(text) FROM public, secure_auth_login;
36 GRANT USAGE ON SCHEMA secure_auth TO secure_auth_login;

37 GRANT EXECUTE ON FUNCTION secure_auth.user_lookup(text) TO secure_auth_login;

G 27th Jun 2024 - Swiss PGDay
\

104

(&

Take home: connections scalability

PostgreSQL connections scalability has been improved in
recent versions but, in some cases, to achieve satisfactory
results a connection pooling software is required and strongly
recommended. An helm chart provided by the community for
the community, would significantly facilitate the deployment
and the adoption of PgBouncer, particularly for applications
deployed with K8s.

@ 27th Jun 2024 - Swiss PGDay 105

Take home: connection pooling and K8s

Depending on the usage pattern,
this seems to be of particular
importance for applications with an
OLTP/OLAP load — and especially
if they are deployed over multiple
nodes, containers, pods - and they
use more than a couple of
hundreds connections, mostly idle,
while opening/closing others.

(@

@ 27th Jun 2024 - Swiss PGDay

106

From zero... to hero

Long journey from...

9 ¢ ceneral /Gitlab Dashboard v = B ¢ Gceneral /PostgresaL Monitoring ¢ ¢ Backend Processes per database

GitLab PROD - Promethes «

System Losd
Percentage of htp requests served within 2.5 seconds.

16:00 16:30 17:00 17:30

== 3admin == dod_dbmon == gitlab == posigres postgres_global template0 templatel

System Load Backend Processes per database

Petcentageof i requests served witin 2.5 seconds
= 1min

= smin

= 15min

= #ofcpUs

w0 w20 [0600 060 1000 200 1600 1800

o i o — admin == dod_dbmon = gillsh == posigres = posigres.globsl — femplaled — templatel

DB on Demand is hiring!

early-career technician
member (or associated) states individuals
max two years of professional experience

highest educational qualification by the application deadline:
secondary education diploma

iInfo and application
https://cern.ch/it-da-db-2024-105-grae

111l

!

27" Jun 2024 Maurizio De Giorgi | Solving PostgreSQL connection scalability: Insights from CERN'’s GitLab Service 108

CERN

\
NS

That’s all folks!

Maurizio De Giorgi
maurizio.degiorgi@cern.ch

Ismael Posada Trobo
ismael.posada.trobo@cern.ch

27™ Jun 2024 - Swiss PGDay - Solving PostgreSQL connection scalability: Insights from CERN'’s GitLab Service

Multi Version Concurrency Control

(&

T1

T2

T3

T4

15

Time Y

Transaction manager

0

(200]

(200,201)

(200,201,202]

(201,202)

Transaction_A

READ COMMITTED

BEGIN;

SELECT * FROM tbl;
txid = 200
Snapshot="200:200:"

rrrrrrrr B

COMMIT,

,,)=

Transaction_B

READ COMMITTED

BEGIN;

SELECT * FROM tbl;
txid = 201
Snapshot="200:200:"

SELECT * FROM tbl;
Snapshot="201:201:"

READ COMMITTED: a snapshot for each statement
REPEATABLE READ/SERIALIZABLE: a snapshot for 1°' statement

Transaction_C

REPEATABLE READ

BEGIN;
SELECT * FROM tbl;
txid = 202

Snapshot="200:200:"

SELECT * FROM tbl;

27th Jun 2024 - Swiss PGDay

Credits Hironobu SUZUKI@InterDB https://www.interdb.jp/pa/pgsql05.html

110

https://www.interdb.jp/pg/pgsql05.html

