
Pattern matching in the
Unicode space

Johannes Graën
johannes.graen@uzh.ch

                                



To boldly go where no one has gone before
Pattern matching in the Unicode space

Johannes Graën
Friday 28th June, 2024



Background

Pattern matching on attributes of word sequences (among others)

Example
Find a noun phrase that consists of the following sequence:

1 one determiner (article) – DET
2 at least two times

1 an optional adverb – ADV
2 one adjective – ADJ
3 optionally a comma or a conjunction – CONJ

(unless in front of a noun)

3 at least one noun – NOUN

1



Representation as automaton (DCG)

2



Implementation as recursive CTE

…works, but performance is rather underwhelming
WITH RECURSIVE t r a n s i t i o n ( s rc , t rg ) AS (

VALUES ( 1 , 2 ) , ( 1 , 3 ) , ( 2 , 3 ) , ( 3 , 3 ) , ( 3 , 4 ) , ( 3 , 5 ) , ( 3 , 6) , . . .
) , search AS (

SELECT l i s t . pos i t ion , 1 AS state , . . .
FROM l i s t
WHERE upos = ' DET '

UNION ALL
SELECT l i s t . pos i t ion , t . t r g AS state , . . .
FROM search s
JOIN t r a n s i t i o n t ON t . s r c = s . s ta te
JOIN l i s t ON l i s t . po s i t i on = s . po s i t i on + 1
WHERE

( l i s t . upos = ' ADJ ' AND ( ( t . s rc , t . t r g ) IN ( ( 1 , 3 ) , ( 2 , 3 ) , . . . ) )
OR ( l i s t . upos = 'ADV ' AND ( ( t . s rc , t . t r g ) IN ( ( 1 , 2 ) , ( 3 , 2 ) , . . . ) )
OR . . .

) . . . 3



Better solution? Can we use regular expressions?

regular expressions can do everything we want
but we need to represent data as strings
… which shouldn’t be a problem as Unicode has more than 1m code points

Approach

1 map attributes to code points
2 construct strings as representations of attributes
3 compile patterns to regular expressions

4



Unicode

17 planes of 216 code points each
minus 2048 surrogates
⇒≈ 1.1m code points
different Unicode Transformation Formats (UTF) – in Postgres only UTF-8:

1 Byte for CPs from U+0000 to U+007F
– 128 CPs≈ 0,012%
2 Bytes for CPs from U+0080 to U+07FF
– 1 920 CPs≈ 0,17%
3 Bytes for CPs from U+0800 to U+D7FF and from U+E000 to U+FFFF
– 61 440 CPs≈ 5,5%
4 Bytes for CPs from U+10000 to U+10FFFF
– 1 048 576 CPs≈ 94,3%

5



Feature distributions follows Zipf’s law

Attribute values

Fr
eq
ue
nc
y

order values by frequency and assign code points
skip characters used by regular expressions (otherwise we need some escaping)
reserve one character for word boundary
… and another one for NULL values
if we outrun the space, reuse upper code point space (red part)
=> lossy representation

6



Pattern matching

SELECT id
FROM cp_rep
CROSS JOIN (

SELECT format (
E ' .%1 $s . \ n ( ( .% 2 $s . \ n ) .%3 $s . \ n ( ( . % 5 $s |%6$s . ) . \ n ) ? ) { 2 , } ( . %4 $s . ) + ' ,

( SELECT chr ( cp ) FROM map_upos_cp WHERE upos = ' DET ' ) , −− $1
( SELECT chr ( cp ) FROM map_upos_cp WHERE upos = 'ADV ' ) , −− $2
( SELECT chr ( cp ) FROM map_upos_cp WHERE upos = ' ADJ ' ) , −− $3
( SELECT chr ( cp ) FROM map_upos_cp WHERE upos = 'NOUN ' ) , −− $4
( SELECT chr ( cp ) FROM map_upos_cp WHERE upos = ' CCONJ ' ) , −− $5
( SELECT chr ( cp ) FROM map_form_cp JOIN form USING ( form_id ) −− $6
WHERE form = ' , ' )

) AS r
) x
WHERE s ~ r ;

⇒ Parallel sequential scan on precalculated strings 7



Some results

a highly intelligent, very sophisticated animal
a very sweet, very cute, very dead man
the so various only wild boars
the sometimes thrilling, sometimes sordid, always mysterious world
a very regular almost parallel fashion
the most important, most talented, most interesting and most extraordinary person

8



YUGABYTEDB: A Postgres
fork to scale horizontally

Franck Pachot
franck@pachot.net

                                



© 2024 All Rights Reserved

1

YugabyteDB: a PostgreSQL 
fork with Horizontal Scalability

Franck Pachot, Developer Advocate

@FranckPachot    



© 2024 All Rights Reserved

Monolithic PostgreSQL   ⨝   Distributed YugabyteDB

APP

NODE-1

YSQL
Query Layer

DocDB
Storage Layer

DISK

1. Parse
2. Analyze, Rewrite
3. Plan
4. Execute

NODE-2

YSQL
Query Layer

DocDB
Storage Layer

DISK

1. Parse
2. Analyze, Rewrite
3. Plan
4. Execute

NODE-3

YSQL
Query Layer

DocDB
Storage Layer

DISK

1. Parse
2. Analyze, Rewrite
3. Plan
4. Execute

NODE

PostgreSQL
Query Layer

PostgreSQL
Access Methods

DISK

1. Parse
2. Analyze, Rewrite
3. Plan
4. Execute

APP

2

Query Layer
(SQL processing)

Storage & 
Transactions



© 2024 All Rights Reserved

Shards are LSM-Trees (RocksDB with read optimizations)

3

                                                           QUERY PLAN
-----------------------------------------------------------------------
Unique (actual time=1.088..73.485 rows=100000 loops=1)
   ->  Index Only Scan using idx on pgbench_accounts
        (actual time=1.087..31.300 rows=100000 loops=1)
         Heap Fetches: 0
         Storage Index Read Requests: 98
         Storage Index Read Execution Time: 4.545 ms
         Metric rocksdb_number_db_seek: 98.000
         Metric rocksdb_number_db_next: 100097.000
         Metric rocksdb_number_db_seek_found: 98.000
         Metric rocksdb_number_db_next_found: 100096.000
         Metric rocksdb_iter_bytes_read: 4249346.000
         Metric ql_read_latency: sum: 38190.000, count: 98.000

yugabyte=# explain ( analyze, dist, debug, costs off, summary off)
           select distinct aid from pgbench_accounts order by aid;



© 2024 All Rights Reserved

4

YugabyteDB: a PostgreSQL 
fork with Horizontal Scalability

Franck Pachot, Developer Advocate

@FranckPachot    



TDE is coming in…
Kai Wagner

kai.wagner@percona.com

                                



TDE is comin in…
Kai Wagner <kai.wagner@percona.com>



©2023 Percona 2

Why do we need encryption?

● Data Security
● Privacy Protection
● Prevention of Data Breaches
● Compliance

 



©2023 Percona 3

Hot topic within the community for years

While almost everyone agrees that encryption 
is good to have, not everyone believes this 
should be part of the PG core. 

<Quote by Kai>

 



©2023 Percona

pg_tde 

1. Encrypted access 
method

2. Extension instead of core 
3. Open Source (no strings 

attached)
4. Encryption for everyone & 

everywhere
5. Flexible 

a. No vendor lock-in 

 

4



©2023 Percona

● User data in tables
○ including TOAST tables, that are 

created using the extension. 
● Write-Ahead Log (WAL) data for tables 

created using the extension
● Temporary tables created during the 

database operation for data tables 
created using the extension

So….what’s encrypted in the extension

5



©2023 Percona

So….what’s not encrypted? 

6

● No index encryption



©2023 Percona

Index encryption is coming!

7



©2023 Percona | Confidential

In short - if you don’t need or use indexes use the extension, otherwise go 
with the patch.

2 solutions in 1

A BCREATE TABLE my_table (id SERIAL, 
pii_data VARCHAR(32), PRIMARY 
KEY(id)) USING pg_tde;

CREATE TABLE my_table (id SERIAL, 
pii_data VARCHAR(32), PRIMARY 
KEY(id)) USING pg_tde_full;

If you know better. Let us know. 
We will be talking to UX too!

This encrypts the table and 
everything related.This encrypts only the table.

Also allows WAL encryption 
(optional) for the whole cluster

Extension Extension Patch+

Everything in option A and more

System tables for now stay not encrypted.
Potential future increment.



©2023 Percona

● Multitenancy 
○ Separate key per database

● Key-Management
● Key-Rotation
● Table level granularity
● Vanilla Support or binary compatibility 

(drop-in)

Superior features of pg_tde 

9



©2023 Percona

● We’re working closely with upstream, to get needed SMGR 
changes into PostgreSQL 18. 
○ If this succeeds, there is no need for a patch anymore
○ “Only” XLog would be left and we would focus on getting this 

change, also into the core
● End Goal - Full Encryption through an extension, without the 

need to patch PostgreSQL - Simply works with Vanilla/Upstream. 

What’s next?

10

GitHub

TDE



Thank You!

percona.com



The Well-Tempered Elephant
Gianni Ciolli

                                



©EDB 2024 — ALL RIGHTS RESERVED.

The Well-Tempered Elephant

Gianni CIolli
Global VP, Practice Lead High Availability
PGDay.CH, 27-28 June 2024



©EDB 2024 — ALL RIGHTS RESERVED.

Prelude and Fugue in C major
played by Glenn Gould

from J. S. Bach, The Well-Tempered Clavier, Book I



©EDB 2024 — ALL RIGHTS RESERVED.

The Well-Tempered Clavier

● Published by Johann Sebastian Bach

● The most important piano music

● Composed by two books: 1722 and 1742

● In total, 48 Prelude and Fugue pieces

● 48 = 2 (books) x 12 (keys) x 2 (modes)



©EDB 2024 — ALL RIGHTS RESERVED.

The fugues in the Well-Tempered Clavier

● Fugues follow a precise format and can be analyzed

● Kyle Rother (University of Cape Town)
transcribed the 48 fugues in digital format (Lilypond)

● We import these fugues into PostgreSQL

○ Lilypond: compile sources into MIDI files

○ mftext: dump notes from MIDI files to stdout

○ COPY: import notes in a table



©EDB 2024 — ALL RIGHTS RESERVED.

The Well-Tempered Elephant, in short: pgwtc

● Use PostgreSQL for the analysis of fugues

● The WTC is the obvious starting point,
but pgwtc can be used for any fugue

● Load notes in a Postgres table

○ A fugue is composed by 2-5 voices

○ A voice is a sequence of notes and pauses

○ Total: 51045 notes (after data cleaning)



©EDB 2024 — ALL RIGHTS RESERVED.

Why PostgreSQL?

● COPY to easily load text data into a table

● Custom aggregates to clean the data

● Window functions to aggregate sequences of notes

● Custom operators to display sequences of notes
and recognise themes as matching sequences of notes

● Extensions to facilitate reuse of the above tools for the 
analysis of other fugues



©EDB 2024 — ALL RIGHTS RESERVED.

Screenshot #1: Example of query



©EDB 2024 — ALL RIGHTS RESERVED.

Screenshot #2: Example of output



©EDB 2024 — ALL RIGHTS RESERVED.

Thank you!

(and thank J. S. Bach too)



PostgreSQL in the snow
send the right athletes to the

finals
Andreas Gruhler

                                



PostgreSQL in the snowPostgreSQL in the snow
Lightning talk 28.06.2024Lightning talk 28.06.2024

 |  |  |  |  |  | 

 Andreas Gruhler Andreas Gruhler

 Share Share  Notes Notes  Edit Edit  Print Print

11

https://codimd.adfinis.com/p/pgday2024-snow
https://codimd.adfinis.com/s/pgday2024-snow
https://codimd.adfinis.com/pgday2024-snow
https://codimd.adfinis.com/p/pgday2024-snow?print-pdf


The setting, slopestyle contestsThe setting, slopestyle contests

22



This is not a presentation This is not a presentation 

https://myheats-demo.p0c.chhttps://myheats-demo.p0c.ch

33

https://myheats-demo.p0c.ch/


The processThe process
Judges submit scores for athletes on paperJudges submit scores for athletes on paper
Event admins transfer scores to ExcelEvent admins transfer scores to Excel
Excel is synced (network!) to officeExcel is synced (network!) to office
Office shuffles and sorts rowsOffice shuffles and sorts rows
New heats (list of athletes) sent to judgesNew heats (list of athletes) sent to judges

44



The output/referenceThe output/reference

55



The problemThe problem
Organizer: How to Organizer: How to notnot send the wrong athletes send the wrong athletes
to the finals?to the finals?
Athlete/Audience: No live stats, how did I do inAthlete/Audience: No live stats, how did I do in
my run?my run?

66



Inefficient scoring and reporting process in slopestyleInefficient scoring and reporting process in slopestyle
contests:contests:

Errors pile up quickly in additional heatsErrors pile up quickly in additional heats
Different medias (paper -> xls)Different medias (paper -> xls)
Existing scoring platforms are complexExisting scoring platforms are complex
(expensive, privacy concerns)(expensive, privacy concerns)

77



One solutionOne solution

Use a database (PostgreSQL, Supabase)Use a database (PostgreSQL, Supabase)

88



The requirementsThe requirements
Mobile, screens are expensive, phones areMobile, screens are expensive, phones are
ubiquitousubiquitous
Excel compatible, it’s just tabular score dataExcel compatible, it’s just tabular score data
Local, keep in control of your data (privacy)Local, keep in control of your data (privacy)
Reasonably secure and performantReasonably secure and performant

99



1010



User educationUser education

1111



Security & performance advisorsSecurity & performance advisors

1212



Hack onHack on
All in a box (Raspberry Pi)All in a box (Raspberry Pi)

Realtime feature with PostgreSQLRealtime feature with PostgreSQL
publicationspublications
Javascript magic link authenticationJavascript magic link authentication

Export/importExport/import

1313



A Song of Ice and Fire
Pavlo Golub

pavlo.golub@cybertec.at

                                



A Song of Ice and Fire
Pavlo Golub

Senior Database Consultant

pavlo.golub@cybertec.at

@PavloGolub

1



 



 



 



 



 
fuzzystrmatch

The fuzzystrmatch module provides several functions 

to determine similarities and distance between 

strings:

- Soundex

- Levenshtein

- Metaphone & Double Metaphone



 
pg_get_keywords ()
- Returns a set of records describing the SQL keywords 

recognized by the server. The word column contains 

the keyword



 
difference(text, text) returns int
- The soundex() function converts a string to its 

Soundex code. The difference function converts two 

strings to their Soundex codes and then reports the 

number of matching code positions. Since Soundex 

codes have four characters, the result ranges from 

zero to four, with zero being no match and four being 

an exact match.



 
=> SELECT word FROM pg_get_keywords() WHERE difference('dreams', word) >= 2;
   word
-------------------
 columns
 current
 current_catalog
 current_date
 current_role
 current_schema
 current_time
 current_timestamp
 current_user
 database
 decimal
 definer
 delimiter
 delimiters
 depends
 …



 
Boulevard of broken [plans | trims | routines | drops | 

froms | grants | groups] :)
 …



 
SELECT word, metaphone('dreams', 10), metaphone(word, 10),
levenshtein_less_equal(metaphone('dreams', 10), metaphone(word, 10), 3)
FROM pg_get_keywords()
ORDER BY 4 ASC LIMIT 40;

word | metaphone | metaphone | levenshtein_less_equal
------------+-----------+-----------+------------------------
 trim   | TRMS  | TRM   |                  1
 from   | TRMS  | FRM   |                  2
 force  | TRMS  | FRS   |                  2
 time   | TRMS  | TM    |                  2
 normalize  | TRMS  | NRMLS |                  2
 freeze | TRMS  | FRS   |                  2
 names  | TRMS  | NMS   |                  2
 schemas | TRMS  | SKMS  |                  2
 temp   | TRMS  | TMP   |                  2
 trigger | TRMS  | TRKR  |                  2
 types  | TRMS  | TPS   |                  2
 primary | TRMS  | PRMR  |                  2
 drop   | TRMS  | TRP   |                  
…



 
SELECT word, levenshtein_less_equal('dream', word, 3)
FROM pg_get_keywords()
ORDER BY 2 ASC LIMIT 40;

 word  | levenshtein_less_equal
---------------+------------------------
 read      |                  2
 real      |                  2
 treat     |                  2
 desc      |                  3
 dec       |                  3
 from      |                  3
 data      |                  3
 trim      |                  3
 rename    |                  3
 array     |                  3
 drop      |                  3
 year      |                  3
 create    |                  3
 ref       |                  3
 day       |                  3
…



 
"O du lieber Augustin"
- O du lieber Extension, Execute, Aggregate,

- O du lieber Committed, alles ist hin.



 
"Du hast"
=> DO
$$

DO CAST KEY!
DO CAST KEY 

CASCADE!
DO CAST KEY 

CASCADE
AND EACH BY NULL

DISCARD!
$$



Can PostgreSQL have a more
prominent role in AI boom?

Josef Machytka

                                



Can PostgreSQL have a 
more prominent role in the 
AI boom?

• Josef Machytka - NetApp
• 2024-06-27 Swiss PG day

"Maybe in 20 years, 
everything will be done
in PostgreSQL?"

(Simon Riggs, 
talk on PG conf EU 2023)

Pictures generated
 with DeamDreamGenerator



PostgreSQL already has 
vector storage and vector 
search

• Extension pgvector, with vector 
data type, indexing methods 
and vector search.

• We have seen very nice 
talks about it here. I really enjoyed 
them!

• But every database is now 
advertising vector search…

• Can we do even better in 
PostgreSQL?



All the magic 
is happening inside an 
embedding model

• Embedding models are algorithms trained to 
encapsulate information into dense 
representations in a multi-dimensional 
space. 

(aws.amazon.com/what-is/embeddings-in-
machine-learning)

• Vector embeddings are a way to convert 
words and sentences and other data into 
numbers that capture their meaning and 
relationships.

(www.elastic.co/what-is/vector-embedding)

http://aws.amazon.com/what-is/embeddings-in-machine-learning
http://aws.amazon.com/what-is/embeddings-in-machine-learning
https://www.elastic.co/what-is/vector-embedding


Neural networks 
and ML models are all 
about vectors and 
numbers

• Whole AI model is just a very advanced 
statistics.

• Stores data in its own binary format.

• TensorFlow ML model:
- meta data of the graph structure
- variables in checkpoint files (saved steps 
during training of the model)
- index file

• They internally simulate graph database; 
they could easily hit different limits and 
performance problems.

• From big data perspective it is just another 
bunch of vectors. So maybe with 
PostgreSQL they can do better?



Databases obtain new 
functionality for ML, so 
why not AI?

• BigQuery already implemented ML 
and AI related functionality - you can use 
pretrained models directly in SQL

• PostgresML implements ML functionality

• New extensions for ML and AI models?

• Much more dimensions would be 
necessary – AI uses internally even 
billions of dimensions…

• I am not the ML expert; I am just asking...

• But maybe future really is more about 
PostgreSQL being everywhere...

• Could be also a very good new impulse 

for PostgreSQL improvements…



Visualizing Postgres buffers
Dickson Guedes

                                



https://github.com/guedes/pgviz_experiments/tree/files

                                

https://github.com/guedes/pgviz_experiments/tree/files

	Slide 1: Can PostgreSQL have a more prominent role in AI boom?
	Slide 2: YUGABYTEDB: A Postgres fork to scale horizontally
	Slide 3: TDE is coming in…
	Slide 4: The Well-Tempered Elephant
	Slide 5: PostgreSQL in the snow send the right athletes to the finals 
	Slide 6:  A Song of Ice and Fire
	Slide 7: Pattern matching in the Unicode space
	Slide 8: Visualizing Postgres buffers

