O EDB

Postgres for the Al Generation

Bringing Vectors to Postgres with
pgvector

Gulgin Yildinm Jelinek
Staff Database Engineer
27 June 2024, Swiss PGDay

-

{)= EDB

Postgres for the Al Generation

Gulcin Yildirrm Jelinek

Staff Engineer, EDB

« Host @ The Builders: A Postgres Podcast
= Co-founder @ Prague PostgreSQL Meetup
= Previously on Board of Directors @ PostgreSQL Europe

X: @apatheticmagpie @postgrespodcast, @PrahaPostgreSQL

AGENDA

= What is pgvector?

= What is vector search and why is it used?
= Generating and querying embeddings

= New index types: IVFFlat and HNSW

= Future of vectors, Al and Postgres

&

gvector

Language Support

» Go: pgvector-go

= Python: pgvector-python

» Rust: pgvector-rust

» C: pgvector-c

= JavaScript, TypeScript: pgvector-node

= PHP: pgvector-php

What is vector (similarity) search?

Vector similarity search is a technique used to find the most
similar vectors to a given vector (usually a query vector).

This query is typically performed by calculating distances in
vector space, and various metrics (such as Euclidean distance,
cosine similarity) can be used to measure the similarity
between the query vector and other vectors.

EEEEEEEEEEEEEEEEEEEEEEEEEEE

What is vector (similarity) search?

Images

Documents

' Transforminto

embedding

Audio

4

Vector

representation

Nearest neighbor

Results

Vector
representation

[e

]

Transforminto
embedding

Query

EEEEEEEEEEEEEEEEEEEEEEEEEEE

What is vector (similarity) search?

queen warsaw
king - man + woman paris - france + poland
b O & &

What is vector search useful for?

Al applications: working with high-dimensional data

« Recommendation engines

« Image search

- Natural language processing (NLP)
« Content-based filtering

« Similarity-based Al tasks

= Prediction solutions

EEEEEEEEEEEEEEEEEEEEEEEEEEE

What is vector?

X=[1,3, 5]

What is vector?

—t
\J

Image source: https://media5.datahacker.rs/2020/03/Picture36-1-768x712.jpg

(é 3 ©EDB 2024 — ALL RIGHTS RESERVED.

Vector Data Type

« Each vector takes 4 * dimensions + 8 bytes of storage

= Vectors can have up to 16,000 dimensions.

= Vector operators:
- <-> Euclidean distance
« <#> negative inner product
- <=> cosine distance
- + element-wise addition
. - element-wise subtraction
« * element-wise multiplication

oo

- Vector functions:
* cosine_distance
* inner_product
« |2_distance (Euclidean distance)
* |1_distance
« vector_dims (number of dimensions)

©EDB 2024 — ALL RIGHTS RESERVED.

Sample app code

https://github.com/gulcin/pgvector_blog

postgres=# Create extension vector;
CREATE EXTENSION

CREATE TABLE documents (
1d int PRIMARY KEY,
title text NOT NULL,
content TEXT NOT NULL

EEEEEEEEEEEEEEEEEEEEEEEEEEE

—— Create document_embeddings table
CREATE TABLE document_embeddings (
1d 1nt PRIMARY KEY,
embedding vector(1536) NOT NULL

i

CREATE INDEX document_embeddings_embedding_idx ON document_embeddings USING hnsw (embedding
vector_12_ops);

EEEEEEEEEEEEEEEEEEEEEEEEEEE

—— Insert documents into documents table

INSERT INTO documents VALUES ('1', 'pgvector', 'pgvector is a PostgreSQL extension that provides
support for vector similarity search and nearest neighbor search in SQL.');

INSERT INTO documents VALUES ('2', 'pg_similarity', 'pg_similarity is a PostgreSQL extension that
provides similarity and distance operators for vector columns.');

INSERT INTO documents VALUES ('3', 'pg_trgm', 'pg_trgm is a PostgreSQL extension that provides
functions and operators for determining the similarity of alphanumeric text based on trigram
matching.');

INSERT INTO documents VALUES ('4', 'pg_prewarm', 'pg_prewarm is a PostgreSQL extension that provides
functions for prewarming relation data into the PostgreSQL buffer cache.');

©EDB 2024 — ALL RIGHTS RESERVED. &

What are embeddings and how do we
generate them?

N

serpentine sidekicks —»|

Text

\

Embedding
model

— 0.004 0.003 0.002

/

Text as vector

-0.014

©EDB 2024 — ALL RIGHTS RESERVED.

Python code to preprocess and embed documents
import openai
import psycopg2

Load OpenAI API key
openai.api_key = "sk-..." #YOUR OWN API KEY

Pick the embedding model
model_id = "text-embedding-ada-002"

Connect to PostgreSQL database
conn = psycopg2.connect(database="postgres", user="gulcin.jelinek", host="localhost", port="5432")

Fetch documents from the database

cur = conn.cursor()

cur.execute("SELECT id, content FROM documents")
documents = cur.fetchall()

Process and store embeddings in the database
for doc_id, doc_content in documents:
embedding = openai.Embedding.create(input=doc_content, model=model_id) ['data'][@]['embedding']
cur.execute("INSERT INTO document_embeddings (id, embedding) VALUES (%s, %s);", (doc_id,
embedding))
conn.commit()

Commit and close the database connection
conn.commit()

Querying embeddings

Python code to preprocess and embed documents
import psycopg2

Connect to PostgreSQL database
conn = psycopg2.connect(database="postgres", user="gulcin.jelinek", host="localhost", port="5432")

cur = conn.cursor()
Fetch extensions that are similar to pgvector based on their descriptions
query = """
WITH pgv AS (
SELECT embedding
FROM document_embeddings JOIN documents USING (id)
WHERE title = 'pgvector'
)
SELECT title, content
FROM document_embeddings
JOIN documents USING (id)
WHERE embedding <-—> (SELECT embedding FROM pgv) < 0.5;"""
cur.execute(query)

Fetch results
results = cur.fetchall()

Print results in a nice format

for doc_title, doc_content in results:
print(f"Document title: {doc_title}")
print(f"Document text: {doc_content}")
print()

> python3 query.py
Document title: pgvector
Document text: pgvector is a PostgreSQL extension that provides support for vector similarity search

and nearest neighbor search in SQL.
Document title: pg_similarity

Document text: pg_similarity is a PostgreSQL extension that provides similarity and distance
operators for vector columns.

©EDB 2024 — ALL RIGHTS RESERVED.

Trade-off analysis

= Performance

= Cost

= Accuracy
= Precision

= Recall

EEEEEEEEEEEEEEEEEEEEEEEEEEE

J

Indexing vectors

= pgvector performs “exact nearest neighbor search” by default
» Add index to use “approximate nearest neighbor search”

» Supported index types: IVFFlat, HNSW (0.5.0)

EEEEEEEEEEEEEEEEEEEEEEEEEEE

o0

Index types

IVFFlat

= Divides vectors into lists
= Faster build times
= Uses less memory

= Lower query performance
(speed-recall tradeoff)

= Create index after the table has
some data

HNSW

Creates a multilayer graph
Slower build times

Uses more memory
Better query performance

Index can be created without any
data in the table (no training step)

EEEEEEEEEEEEEEEEEEEEEEEEEEE

dbpedia 1,000,000 BUILD TIME
OpenAI embeddings (less is better)

1h 27m 30s

t 9m 27s '
pgvector 0.5.1 HNSW pgvector 0.6.0 HNSW
m=16, ef_construction=200 m=16, ef_construction=200

4XL: 16-core CPU, 64GB RAM 4XL: 16-core CPU, 64GB RAM

©EDB 2024 — ALL RIGHTS RESERVED.

Future of vectors and Postgres

- pgvector 0.7.0 (29 April 2024)

- Add halfvec and sparsevec type

= Support for bit vectors to HNSW

- Add hamming_distance function and jaccard_distance function

- Add quantize_binary function and subvector function

- Updated comparison operators to support vectors with different dimensions

- pgvector 0.6.0 (29 Jan 2024)

= Support for parallel index builds for HNSW
= Improved performance of HNSW

= Reduced memory usage and reduced WAL generation for HNSW index builds

EEEEEEEEEEEEEEEEEEEEEEEEEEE

Problems to-be-solved
- Hybrid search, hybrid ranking

Efficient filtering with vector search
Hybrid combinations of text scoring functions, like BM25, with vector distance
Pre-filtering, post-filtering?

Multi-column indexing

Multi-vector indexing
Multi-modal product search: Useful for product and e-commerce applications
Each data item represented by one vector is not very realistic for large documents
Index multiple vectors per document (for large text documents)
Retrieve documents by the closest vector in each

Cost of environment (hardware)
Dependency to GPU, GPU-optimized instances are SSS
How to tune for lowest possible resource usage

Scaling vector data for production

oo

©EDB 2024 — ALL RIGHTS RESERVED.

&’ EDR StoriFe Al Cordraian Swiss PGDay 2024 Sponsor

Enter to Win

Take partin the EDB prize draw
towinabrand new book.

S~

| "
'.’,,,"' %, :
= \ ' f” T - -, .' ; :
i :m‘ — J SCAN THE QR CODE
e . AND FILL IN THE FORM
POStgreSQL 16 TOENTER
dministration

Cookbook

Solve real-work database administration challenges
Wwith 180+ practical fecipes and best practices

©EDB 2024 — ALL RIGHTS RESERVED.

Villagtzll

Dankel Merc

