
Escaping a public cloud using logical replication with minimal downtime

Who we are

27.06.2023 Page 2Escaping a public cloud using logical replication with minimal downtime

The Company
>Founded in 2010

>More than 100 employees

>Specialized in the Middleware Infrastructure

> The invisible part of IT

>Customers in Switzerland and all over Europe

Our Offer
>Consulting

>Service Level Agreements (SLA)

>Trainings

>License Management

About me

27.06.2023 Page 3Escaping a public cloud using logical replication with minimal downtime

Daniel Westermann

Principal Consultant

Technology Leader Open Infrastructure

+41 79 927 2446

daniel.westermann[at]dbi-services.com

https://www.linkedin.com/in/daniel-westermann/

@danielwestermann@mastodon.social

https://www.linkedin.com/in/daniel-westermann/

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 4

(potential) customer called

Disclaimer!

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 5

Disclaimer

What follows is not ...
>A recommendation to leave a public cloud

>Blaming of a public cloud provider

>A recommendation to not use a managed service in the cloud

What follows is …
>Know your use case

>Know the public cloud managed services

> Pricing

> Flexibility

> Fallback scenarios

> How to get out, if required for any reason

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 6

(potential) customer called

This is the story of a customer project

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 7

How it started
Customer call

Subject 1
>Lorem ipsum dolor sit amet, consectetur adipiscing elit

>Sentence to highlight

Subject 2
>Nunc at leo dictum, bibendum ex eget, pretium enim

> Ut ultrices luctus molestie

>Curabitur sit amet neque erat

> Pellentesque in lorem ac est congue tempor

(potential new) customer called

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 8

How it started
Initial request

Customer has a customer in a public cloud
>To save money and resources a project started in a public cloud

>Focus was on

> Getting it up and running as fast as possible

> Focus on development

> Easy handling of resources

>No real DBA around

>Mostly a development company

>Used the managed PostgreSQL service of that public cloud provider

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 9

How it started
Initial request

A few months after go live
>Storage consumption was at 8TB for production

> + 8TB for the replica

> + 2TB for every development clone

>No possibility to archive old data

> Legal constraints on what can be deleted

> Even if they could, there is no way to shrink the storage for the managed PostgreSQL service

>Stuck on PostgreSQL 11.x

> Will go out of support this November

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 10

How it started
Initial request

Key pain points to resolve
>Reduce storage consumption

>Define an archival strategy

>Upgrade to a more recent version of PostgreSQL

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 11

It was all about reducing costs ...

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 12

... and give more flexibility

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 13

Architecture overview
The initial landscape

Managed PostgreSQL
Production

Managed PostgreSQL
Production Replica

Managed PostgreSQL
Production Reporting Replica

Regularly created
from backups

Development
Instances

8TB 8TB

8TB

2TB

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 14

Architecture overview
The initial landscape

Let's do some math!

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 15

Architecture overview
Storage pricing

We'll take 2000 USD per 8TB per month (approx. the average of the three main providers)
>Production: 4000 USD per month

>Reporting: 2000 USD per month

>Development: 1000 USD per month

>Backup storage: 2500 USD per month (half the price)

>9500 USD overall -> 114'000 per year, just for the storage

> This does not include compute and network costs

>This is per end-customer of the customer's customer

> Yes, things can get complicated

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 16

Options
Priority on: Storage reduction

Priority 1: Reduce storage consumption

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 17

Options
Priority one: Storage reduction

What options do we have to reduce storage consumption?
>vacuum full?

> This is a blocking operation

>Getting rid of old data?

> Create an archival strategy

>Optimize how PostgreSQL stores data?

>Compression?

>Getting rid of unused / redundant indexes?

What do all these options do have in common?
>They will not reduce the costs associated to the storage in a public cloud

> None of the major public cloud providers offers a way to reduce the size of volumes

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 18

Options
Priority one: Storage reduction

What options do we have to reduce storage consumption?
>vacuum full?

> This is a blocking operation

>Getting rid of old data?

> Create an archival strategy

>Optimize how PostgreSQL stores data?

>Compression?

>Getting rid of unused / redundant indexes?

What do all these options do have in common?
>They will not reduce the costs associated to the storage in a public cloud

> None of the major public cloud providers offers a way to reduce the size of volumes

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 19

Options
Priority one: Storage reduction

Alignment padding
>An empty row in PostgreSQL

>One SMALLINT column

postgres=# SELECT pg_column_size(row()) as bytes;

 bytes

 24

(1 row)

postgres=# SELECT pg_column_size(row(0::smallint)) as bytes;

 bytes

 26

(1 row)

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 20

Options
Priority one: Storage reduction

Alignment padding
>One BIGINT column

>So what?

>?? 2 + 8 = 16?

postgres=# SELECT pg_column_size(row(0::bigint)) as bytes;

 bytes

 32

(1 row)

postgres=# SELECT pg_column_size(row(0::smallint,0::bigint)) as bytes;

 bytes

 40

(1 row)

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 21

Options
Priority one: Storage reduction

Alignment padding
>The internal alignment in PostgreSQL is 8 bytes

>Fixed length columns that follow each other must be padded with empty bytes in some cases

> Instead of 2+8 the math becomes 8+8

postgres=# SELECT pg_column_size(row(0::smallint,0::bigint)) as bytes;

 bytes

 40

(1 row)

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 22

Options
Priority one: Storage reduction

Alignment padding
>Given this simple table

postgres=# create table t (a boolean, b smallint, c timestamp, d smallint, e bigint);

CREATE TABLE

postgres=# \d t

 Table "public.t"

 Column | Type | Collation | Nullable | Default

--------+-----------------------------+-----------+----------+---------

 a | boolean | | |

 b | smallint | | |

 c | timestamp without time zone | | |

 d | smallint | | |

 e | bigint | | |

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 23

Options
Priority one: Storage reduction

Alignment padding
>This is what PostgreSQL knows / sees

postgres=# SELECT a.attname, t.typname, t.typalign, t.typlen

 FROM pg_class c

 JOIN pg_attribute a ON (a.attrelid = c.oid)

 JOIN pg_type t ON (t.oid = a.atttypid)

 WHERE c.relname = 't'

 AND a.attnum >= 0

 ORDER BY a.attnum;

 attname | typname | typalign | typlen

---------+-----------+----------+--------

 a | bool | c | 1

 b | int2 | s | 2

 c | timestamp | d | 8

 d | int2 | s | 2

 e | int8 | d | 8

(5 rows)

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 24

Options
Priority one: Storage reduction

Alignment padding
>https://www.postgresql.org/docs/current/catalog-pg-type.html

Value Meaning

c char alignment, no alignment needed

s short alignment (2 bytes)

i int alignment (4 bytes)

d double alignment (8 bytes)

https://www.postgresql.org/docs/current/catalog-pg-type.html

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 25

Options
Priority one: Storage reduction

Creating one million rows in that table

postgres=# insert into t

 select true

 , 1

 , now()

 , 1

 , i

 from generate_series(1,1000000) i;

INSERT 0 1000000

postgres=# select pg_size_pretty(pg_relation_size('t'));

 pg_size_pretty

 57 MB

(1 row)

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 26

Options
Priority one: Storage reduction

Fixing the column order

>This saved 7MB of overhead!

postgres=# drop table t;

DROP TABLE

postgres=# create table t (e bigint, c timestamp, b smallint, d smallint, a boolean);

CREATE TABLE

postgres=# insert into t select i

, now()

, 1

, 1

, true from generate_series(1,1000000) i;

INSERT 0 1000000

postgres=# select pg_size_pretty(pg_relation_size('t'));

pg_size_pretty

50 MB

(1 row)

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 27

Options
Priority one: Storage reduction

The rule for column ordering is
>Large fix sized columns at the beginning

> e.g. BIGINT, TIMESTAMP

>Smaller fixed sized columns after, in decending order of the the size

> e.g. INT then SMALLINT ...

>Variable length columns at the end

> e.g. NUMERIC, TEXT

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 28

Options
Priority one: Storage reduction

Getting the correct column ordering out of the catalog

postgres=# SELECT a.attname, t.typname, t.typalign, t.typlen

FROM pg_class c

JOIN pg_attribute a ON (a.attrelid = c.oid)

JOIN pg_type t ON (t.oid = a.atttypid)

WHERE c.relname = 't'

AND a.attnum >= 0

ORDER BY t.typlen DESC;

attname | typname | typalign | typlen

---------+-----------+----------+--------

e | int8 | d | 8

c | timestamp | d | 8

b | int2 | s | 2

d | int2 | s | 2

a | bool | c | 1

(5 rows)

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 29

Options
Priority one: Storage reduction

We've tested that on one of the test environments
>Only fixing the column order resulted in 11% storage reduction

> This is 880 GB per instance!

> Of course changing the column order could force application level changes as well

The only options to implement this?
>Create a new instance

> pg_dump / pg_restore

> Problem: Downtime

>Create a new instance

> Create the schema with the correct ordering of the columns

> Setup logical replication

> Problem: The initial load will take some time

> Problem: Sequences are not replicated

>Both solutions will temporarily increase the storage costs

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 30

The new setup
Setting up logical replication

Managed PostgreSQL
Production, PostgreSQL 11.x

Managed PostgreSQL
Production Replica

PostgreSQL 11.x

Managed PostgreSQL
Logical replication target

PostgreSQL 14.x

8TB 8TB

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 31

PostgreSQL logical replication
A bit of historyA bit of history

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 32

PostgreSQL logical replication
A bit of history

PostgreSQL 9.0 (20-SEP-2010) - out of support!
>Physical replication

>Only between the same major versions of PostgreSQL

PostgreSQL 9.6 (29-SEP-2016) - out of support!
>Logical decoding

> allows extensions to insert data into the WAL stream that can be read by logical-decoding plugins

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 33

PostgreSQL logical replication
A bit of history

PostgreSQL 10 (05-OCT-2017) - out of support
>Logical replication

> Using publish / subscribe

>Restrictions

> No replication of DDL commands

> No replication of sequences

> No replication of TRUNCATE commands

> No replication of LARGE objects

> Only from base tables to base tables

> No views, materialized views, partition root tables, foreign tables

> In case of partitions only to the same partition structure

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 34

PostgreSQL logical replication
A bit of history

PostgreSQL 10 (05-OCT-2017) - out of support

>For all tables

>For a list of tables

>Publication parameters: publish='insert, update, delete'

postgres=# \h create publication

Command: CREATE PUBLICATION

Description: define a new publication

Syntax:

CREATE PUBLICATION name

 [FOR TABLE [ONLY] table_name [*] [, ...]

 | FOR ALL TABLES]

 [WITH (publication_parameter [= value] [, ...])]

postgres=#

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 35

PostgreSQL logical replication
A bit of history

PostgreSQL 11 (18-OCT-2018) - out of support November 2023
>Logical replication

> Using publish / subscribe

> Allow replication slots to be advanced programatically - pg_replication_slot_advance()

>Restrictions

> No replication of DDL commands

> No replication of sequences

> No replication of TRUNCATE commands - restriction removed

> No replication of LARGE objects

> Only from base tables to base tables

> No views, materialized views, partition root tables, foreign tables

> In case of partitions only to the same partition structure

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 36

PostgreSQL logical replication
A bit of history

PostgreSQL 11 (18-OCT-2018) - out of support

>For all tables

>For a list of tables

>Publication parameters: publish='insert, update, delete, truncate'

postgres=# \h create publication

Command: CREATE PUBLICATION

Description: define a new publication

Syntax:

CREATE PUBLICATION name

 [FOR TABLE [ONLY] table_name [*] [, ...]

 | FOR ALL TABLES]

 [WITH (publication_parameter [= value] [, ...])]

postgres=#

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 37

PostgreSQL logical replication
A bit of history

PostgreSQL 12 (03-OCT-2019) - out of support November 2024
>Logical replication

> Using publish / subscribe

> Allow replication slots to be advanced programatically - pg_replication_slot_advance()

> Allow relocation slots to be copied - pg_copy_logical_replication_slot()

>Restrictions

> No replication of DDL commands

> No replication of sequences

> No replication of LARGE objects

> Only from base tables to base tables

> No views, materialized views, partition root tables, foreign tables

> In case of partitions only to the same partition structure

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 38

PostgreSQL logical replication
A bit of history

PostgreSQL 12 (03-OCT-2019) - out of support November 2024

>For all tables

>For a list of tables

>Publication parameters: publish='insert, update, delete, truncate'

postgres=# \h create publication

Command: CREATE PUBLICATION

Description: define a new publication

Syntax:

CREATE PUBLICATION name

 [FOR TABLE [ONLY] table_name [*] [, ...]

 | FOR ALL TABLES]

 [WITH (publication_parameter [= value] [, ...])]

postgres=#

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 39

PostgreSQL logical replication
A bit of history

PostgreSQL 13 (24-SEP-2020)
>Logical replication

> Allow replication slots to be advanced programatically - pg_replication_slot_advance()

> Allow relocation slots to be copied - pg_copy_logical_replication_slot()

> Allow partitioned tables to be replicated, not only the individual partitions

> Allow logical replication into partitioned tables on the subscriber

> Allow control over how much memory is used by logical decoding - logical_decoding_work_mem

>Restrictions

> No replication of DDL commands

> No replication of sequences

> No replication of LARGE objects

> Only from base tables to base tables

> No views, materialized views, partition root tables, foreign tables

> In case of partitions only to the same partition structure

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 40

PostgreSQL logical replication
A bit of history

PostgreSQL 13 (24-SEP-2020)

>For all tables

>For a list of tables

>Publication parameters:

> publish='insert, update, delete, truncate'

> publish_via_partition_root=true/false

postgres=# \h create publication

Command: CREATE PUBLICATION

Description: define a new publication

Syntax:

CREATE PUBLICATION name

 [FOR TABLE [ONLY] table_name [*] [, ...]

 | FOR ALL TABLES]

 [WITH (publication_parameter [= value] [, ...])]

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 41

PostgreSQL logical replication
A bit of history

PostgreSQL 14 (30-SEP-2021)
>Logical replication

> Allow replication slots to be advanced programatically - pg_replication_slot_advance()

> Allow relocation slots to be copied - pg_copy_logical_replication_slot()

> Allow partitioned tables to be replicated, not only the individual partitions

> Allow logical replication into partitioned tables on the subscriber

> Allow control over how much memory is used by logical decoding - logical_decoding_work_mem

> Allow streaming of long in-progress transactions

> Various performance improvements

>Restrictions

> No replication of DDL commands

> No replication of sequences

> No replication of LARGE objects

> Only from base tables to base tables

> No views, materialized views, foreign tables

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 42

PostgreSQL logical replication
A bit of history

PostgreSQL 14 (24-SEP-2021)

>For all tables

>For a list of tables

>Publication parameters:

> publish='insert, update, delete, truncate'

> publish_via_partition_root=true/false

postgres=# \h create publication

Command: CREATE PUBLICATION

Description: define a new publication

Syntax:

CREATE PUBLICATION name

 [FOR TABLE [ONLY] table_name [*] [, ...]

 | FOR ALL TABLES]

 [WITH (publication_parameter [= value] [, ...])]

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 43

PostgreSQL logical replication
A bit of history

PostgreSQL 15 (13-OCT-2022)
>Logical replication

> Allow replication slots to be advanced programatically - pg_replication_slot_advance()

> Allow relocation slots to be copied - pg_copy_logical_replication_slot()

> Allow partitioned tables to be replicated, not only the individual partitions

> Allow logical replication into partitioned tables on the subscriber

> Allow control over how much memory is used by logical decoding - logical_decoding_work_mem

> Allow streaming of long in-progress transactions

> Various performance improvements

> Allow selective publication

> Column lists and filter conditions

>Restrictions

> No replication of DDL commands

> No replication of sequences

> No replication of LARGE objects

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 44

PostgreSQL logical replication
A bit of history

PostgreSQL 15 (13-OCT-2022)

>For all tables

>Column lists and where conditions

postgres=# \h create publication

Command: CREATE PUBLICATION

Description: define a new publication

Syntax:

CREATE PUBLICATION name

 [FOR ALL TABLES

 | FOR publication_object [, ...]]

 [WITH (publication_parameter [= value] [, ...])]

where publication_object is one of:

 TABLE [ONLY] table_name [*] [(column_name [, ...])] [WHERE (expression)]

[, ...]

 TABLES IN SCHEMA { schema_name | CURRENT_SCHEMA } [, ...]

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 45

PostgreSQL logical replication
A bit of history

PostgreSQL 16 (??-??-2023) - currently in Beta - Please test
>Logical replication

> Allow selective publication

> Column lists and filter conditions

> Allow logical replication from replicas

> Allow logical replication subscribers to apply large transactions in parallel

> Allow parallel application of logical replication

>Restrictions

> No replication of DDL commands

> No replication of sequences

> No replication of LARGE objects

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 46

PostgreSQL logical replication
A bit of history

PostgreSQL 16 (??-??-2023) - currently in Beta - Please test

>For all tables

>Column lists and where conditions

postgres=# \h create publication

Command: CREATE PUBLICATION

Description: define a new publication

Syntax:

CREATE PUBLICATION name

 [FOR ALL TABLES

 | FOR publication_object [, ...]]

 [WITH (publication_parameter [= value] [, ...])]

where publication_object is one of:

 TABLE [ONLY] table_name [*] [(column_name [, ...])] [WHERE (expression)]

[, ...]

 TABLES IN SCHEMA { schema_name | CURRENT_SCHEMA } [, ...]

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 47

PostgreSQL logical replication
A bit of history

PostgreSQL 17 (??-??-2024) - in development
>Logical replication

> Allow selective publication

> Column lists and filter conditions

> Allow logical replication from replicas

> Allow logical replication subscribers to apply large transactions in parallel

> Allow parallel application of logical replication

> Allow replication of DDLs?

> https://commitfest.postgresql.org/43/3595/

> Skip replicating the tables specified in except table option?

> https://commitfest.postgresql.org/43/3646/

>Restrictions

> ???

https://commitfest.postgresql.org/43/3595/
https://commitfest.postgresql.org/43/3646/

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 48

PostgreSQL logical replication
A bit of historyArchitecture

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 49

Logical replication
Architecture

wal_level=logical

max_replication_slots=??

max_wal_senders=??

walsender ----------------> apply

max_replication_slots=??

max_logical_replication_workers=??

max_worker_processes=??

max_sync_workers_per_subscription=??

max_parallel_apply_workers_per_subscription=??

Publisher Subscriber

1. Create schema
2. Create publication

2. Create subscription

3. Initial snapshot and synchronization

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 50

Logical replication
Architecture

REPLICA IDENTITY
>A table must have a replica identity

> so rows to be updated and deleted can be identified from the subscriber side

>By default this is the primary key

>Otherwise a unique key should be set

>FULL

> Indexes can be used to identify the rows or

> All columns of the table, slower

> Should not be used

postgres=# \h alter table

…

REPLICA IDENTITY { DEFAULT | USING INDEX index_name | FULL | NOTHING }

…

A publisher can also be a subscripber, and vice versa

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 51

Logical replication
Architecture

pub1

pub2

pub3

sub2

sub1

sub3

The same table can be in multiple publications

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 52

Logical replication
Architecture

pub1
sub3

t1,t2,t3,t4

pub2

t1,t4

sub2 pub2

t10,t11

sub1

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 53

PostgreSQL logical replication
A bit of history

Returning to the setup

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 54

The new setup
Setting up logical replication

Managed PostgreSQL
Production, PostgreSQL 11.x

Managed PostgreSQL
Production Replica

PostgreSQL 11.x

Managed PostgreSQL
Logical replication target

PostgreSQL 14.x

8TB 8TB

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 55

PostgreSQL logical replication
A bit of history

This did not work!

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 56

The new setup
Issues

Why this didn't work
>The initial load was taking more than a week

>For the target, to save costs, cheaper disks have been chosen

> This slowed down the replication

>The publisher could not remove WAL for a very long time

> Storage increase

> Even more costs

> Indexes and primary keys have not been removed on the subscriber

> More slow down

>More costs for an adittional managed PostgreSQL instance

>Limited insight on what was going on on the operating system

> You don't have access to that in a managed PostgreSQL cloud service

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 57

The new setup
IssuesAnother approach

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 58

The new setup - take two
Setting up logical replication

Managed PostgreSQL
Production, PostgreSQL 11.x

Managed PostgreSQL
Production Replica

PostgreSQL 11.x

Self-Managed PostgreSQL
Logical replication target

PostgreSQL 15.x

8TB 8TB

Introduce partitioning

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 59

The new setup - take two
Advantages / disadvantages

Why self managed on a VM
>Full control of the operating system

> I/O statistics

> Memory

> Network

>We could use the latest version of PostgreSQL (15)

> The managed service only offered 14.x

>Faster to scale up and down

> A VM with PostgreSQL is starting much faster than a managed service

> Much more flexibility with the storage options

>Comes with the possibility for partitionig

> Pre-partition the large tables

> Archive data goes to cheap storage

> Live data is on fast, but more expensive storage

>Cheaper than the managed service

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 60

The new setup
IssuesDid it work?

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 61

PostgreSQL logical replication
A bit of history

No!

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 62

The new setup - take two
Advantages / disadvantages

Why it didn't work as well
>The initial load once more took too long

> Was stopped after one and a half weeks

>We still had the issue with increasing WAL usage on the publisher

> More costs for the expensive managed service on the source

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 63

The new setup
IssuesAnother approach

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 64

The new setup - take two
Next approach

What further was discussed
>Can we setup logical replication based on a backup?

> You can't

> You can only restore into a new managed service using those backups

>Can we create a basebackup from that managed instance and start from there?

> Again, you cannot setup logical replication based on a backup

> In a public cloud you cannot even use pg_basebackup

> You don't have super user permissions

>Can we setup logical replication based on dump?

> Can you?

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 65

The new setup
Issues

Small demo

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 66

PostgreSQL logical replication
Setup logical replication based on a dump

The following is one little shell script, explained step by step
>What it does

> Initialize a small pgbench schema in the source

> Create the same schema, without data, in the target

> Create a publication for three out of the four tables in the source

> Create a subscription for the three tables in the target

> Verify logical replication is fine

> Create a publication for the fourth table in the source

> Create a replication connection to the source database and create a snapshot

> Dump the data of the fourth table from the snaphot

> Load into the target

> Create a subscription for the fourth table starting at the snapshot created above

> Verify that logical replication is working fine

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 67

PostgreSQL logical replication
Setup logical replication based on a dump

The script, explained
#!/bin/bash

These are the ports of the source and the target instance

SRCPORT=8888

TGTPORT=8889

Cleanup in case you want to re-run the demo

psql -p 8888 -c "drop publication pub_test";

psql -p 8888 -c "drop publication pub_test_2";

psql -p 8888 -c "drop table

pgbench_accounts,pgbench_branches,pgbench_history,pgbench_tellers"

psql -p 8889 -c "drop subscription sub_test";

psql -p 8889 -c "drop subscription sub_test_2";

psql -p 8889 -c "drop table

pgbench_accounts,pgbench_branches,pgbench_history,pgbench_tellers"

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 68

PostgreSQL logical replication
Setup logical replication based on a dump

The script, explained
intialize some demo data

pgbench -p ${SRCPORT} -i -s 10

psql -p ${SRCPORT} -c "\d"

create one publication for the smaller tables

psql -p ${SRCPORT} -c "create publication pub_test for table

pgbench_branches,pgbench_history,pgbench_tellers;"

create the empty schema in the target

pg_dump -p ${SRCPORT} --schema=public --schema-only | psql -p ${TGTPORT}

create the first subscription for the three tables

psql -p ${TGTPORT} -c "create subscription sub_test connection 'host=localhost

port=${SRCPORT} user=postgres dbname=postgres' publication pub_test;"

Get the meta data of the subscription

psql -p ${TGTPORT} -c "select * from pg_subscription;"

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 69

PostgreSQL logical replication
Setup logical replication based on a dump

The script, explained
Verify that data has been loaded

psql -p ${TGTPORT} -c "select count(*) from pgbench_branches;"

psql -p ${TGTPORT} -c "select count(*) from pgbench_branches;"

Verify the replication is ongoing

psql -p ${SRCPORT} -c "insert into pgbench_branches values (-1,-1,'aa');"

psql -p ${TGTPORT} -c "select * from pgbench_branches where bid = -1;"

Create the second publication for the "large" table

psql -p ${SRCPORT} -c "create publication pub_test_2 for table pgbench_accounts;"

psql -p ${SRCPORT} -c "select * from pg_publication;"

create a snapshot to dump from

This is a replication connection and must be kept open,

so you need a new session from here on

psql -p ${SRCPORT} "dbname=postgres port=${SRCPORT} replication=database"

CREATE_REPLICATION_SLOT my_logical_repl_slot LOGICAL pgoutput;

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 70

PostgreSQL logical replication
Setup logical replication based on a dump

The script, explained
Dump from the snapshot (of course you need to adjust the snapshot ID)

pg_dump -p ${SRCPORT} --snapshot=00000004-00000020-1 -a -t public.pgbench_accounts >

pgbench_accounts.sql

Load & verify the data

psql -p ${TGTPORT} -f pgbench_accounts.sql

psql -p ${TGTPORT} -c "select count(*) from public.pgbench_accounts;"

create the subscription against the slot from above

psql -p ${TGTPORT} -c "create subscription sub_test_2 connection 'host=localhost

port=${SRCPORT} user=postgres dbname=postgres' publication pub_test_2 with (slot_name =

'my_logical_repl_slot', create_slot='false' , enabled='false', copy_data='false');"

Start the replication

psql -p ${TGTPORT} -c "alter subscription sub_test_2 enable;"

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 71

PostgreSQL logical replication
Setup logical replication based on a dump

The script, explained
Verify ongoing replication

psql -p ${SRCPORT} -c "insert into pgbench_accounts select i,i,i,i::text from

generate_series(1000001,1000100) i;"

psql -p ${TGTPORT} -c "select count(*) from public.pgbench_accounts ;"

Exit from the replication connection

\q

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 72

The new setup
Issues

What we finally had to do

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 73

The final setup
What we had to do

The final setup was still this, but ...

Managed PostgreSQL
Production, PostgreSQL 11.x

Managed PostgreSQL
Production Replica

PostgreSQL 11.x

Self-Managed PostgreSQL
Logical replication target

PostgreSQL 15.x

8TB 8TB

Introduce partitioning

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 74

The final setup
What we had to do

The final setup was still this, but ...
> Instead of using only a few publication and subscriptions

> Seperate the setup of logical replication into smaller pieces

> Small schemas got their own publications and subscriptions

> Larger schemas were broken up

> This is easy if there are no foreign keys

> When there are, put related tables in a separate publication / subcription

> The three largest tables got their own publication / subcription

> Downside?

> Creating more pulications requires?

> Increasing max_replication_slots, which requires?

> A restart of production

>Sequences need to be replicated manually at the time of the switch

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 75

The final setup
What we had to do

Other reasons for the self managed target setup
>We have a real superuser

>The next step (if required) becomes much easier

> Going back on-prem

What options do we have now?
>Once more using logical replication, or

>Create a physical replica on-prem and let it catch up

> We can now use pg_basebackup

> This will usually introduce costs for outgoing network traffic

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 76

Lessons learned
(at last for the customer)

27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 77

Lessons learned

When you decide to go for a managed service in a public cloud
>Make yourself familiar with the costs

> There are costs for storage

> Don't forget the storage costs for backups

> There are costs for compute

> There might be costs for network traffic

> The faster you want to go, the more costs you will generate

>Make youself familiar with the limitations

> No superuser

> What extensions do you need?

> What are the possibilities when it comes to monitoring?

>Think about how you can escape such a service in advance

> Once you need to, the strategy should be there

> ... and the strategy must have been tested

Any questions?

Please do ask!

We would love to boost
your IT-Infrastructure

How about you?

Zürich

Basel
Delémont

Nyon

Bern

27.06.2023 Page 78Escaping a public cloud using logical replication with minimal downtime

	Slide 1
	Slide 2: Who we are
	Slide 3: About me
	Slide 4
	Slide 5: Disclaimer
	Slide 6
	Slide 7: How it started
	Slide 8: How it started
	Slide 9: How it started
	Slide 10: How it started
	Slide 11
	Slide 12
	Slide 13: Architecture overview
	Slide 14: Architecture overview
	Slide 15: Architecture overview
	Slide 16: Options
	Slide 17: Options
	Slide 18: Options
	Slide 19: Options
	Slide 20: Options
	Slide 21: Options
	Slide 22: Options
	Slide 23: Options
	Slide 24: Options
	Slide 25: Options
	Slide 26: Options
	Slide 27: Options
	Slide 28: Options
	Slide 29: Options
	Slide 30: The new setup
	Slide 31: PostgreSQL logical replication
	Slide 32: PostgreSQL logical replication
	Slide 33: PostgreSQL logical replication
	Slide 34: PostgreSQL logical replication
	Slide 35: PostgreSQL logical replication
	Slide 36: PostgreSQL logical replication
	Slide 37: PostgreSQL logical replication
	Slide 38: PostgreSQL logical replication
	Slide 39: PostgreSQL logical replication
	Slide 40: PostgreSQL logical replication
	Slide 41: PostgreSQL logical replication
	Slide 42: PostgreSQL logical replication
	Slide 43: PostgreSQL logical replication
	Slide 44: PostgreSQL logical replication
	Slide 45: PostgreSQL logical replication
	Slide 46: PostgreSQL logical replication
	Slide 47: PostgreSQL logical replication
	Slide 48: PostgreSQL logical replication
	Slide 49: Logical replication
	Slide 50: Logical replication
	Slide 51: Logical replication
	Slide 52: Logical replication
	Slide 53: PostgreSQL logical replication
	Slide 54: The new setup
	Slide 55: PostgreSQL logical replication
	Slide 56: The new setup
	Slide 57: The new setup
	Slide 58: The new setup - take two
	Slide 59: The new setup - take two
	Slide 60: The new setup
	Slide 61: PostgreSQL logical replication
	Slide 62: The new setup - take two
	Slide 63: The new setup
	Slide 64: The new setup - take two
	Slide 65: The new setup
	Slide 66: PostgreSQL logical replication
	Slide 67: PostgreSQL logical replication
	Slide 68: PostgreSQL logical replication
	Slide 69: PostgreSQL logical replication
	Slide 70: PostgreSQL logical replication
	Slide 71: PostgreSQL logical replication
	Slide 72: The new setup
	Slide 73: The final setup
	Slide 74: The final setup
	Slide 75: The final setup
	Slide 76
	Slide 77: Lessons learned
	Slide 78

