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The Company
>Founded in 2010

>More than 100 employees 

>Specialized in the Middleware Infrastructure

> The invisible part of IT

>Customers in Switzerland and all over Europe

Our Offer
>Consulting

>Service Level Agreements (SLA)

>Trainings

>License Management
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Daniel Westermann

Principal Consultant

Technology Leader Open Infrastructure

+41 79 927 2446

daniel.westermann[at]dbi-services.com

https://www.linkedin.com/in/daniel-westermann/ 

@danielwestermann@mastodon.social 

https://www.linkedin.com/in/daniel-westermann/
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(potential) customer called

Disclaimer!



27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 5

Disclaimer

What follows is not ...
>A recommendation to leave a public cloud

>Blaming of a public cloud provider

>A recommendation to not use a managed service in the cloud

What follows is …
>Know your use case

>Know the public cloud managed services

> Pricing

> Flexibility

> Fallback scenarios

> How to get out, if required for any reason
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(potential) customer called

This is the story of a customer project
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How it started
Customer call

Subject 1
>Lorem ipsum dolor sit amet, consectetur adipiscing elit

>Sentence to highlight

Subject 2
>Nunc at leo dictum, bibendum ex eget, pretium enim

> Ut ultrices luctus molestie

>Curabitur sit amet neque erat

> Pellentesque in lorem ac est congue tempor

(potential new) customer called
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How it started
Initial request

Customer has a customer in a public cloud
>To save money and resources a project started in a public cloud

>Focus was on

> Getting it up and running as fast as possible

> Focus on development

> Easy handling of resources

>No real DBA around

>Mostly a development company

>Used the managed PostgreSQL service of that public cloud provider
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How it started
Initial request

A few months after go live
>Storage consumption was at 8TB for production

> + 8TB for the replica

> + 2TB for every development clone

>No possibility to archive old data

> Legal constraints on what can be deleted

> Even if they could, there is no way to shrink the storage for the managed PostgreSQL service

>Stuck on PostgreSQL 11.x

> Will go out of support this November
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How it started
Initial request

Key pain points to resolve
>Reduce storage consumption

>Define an archival strategy

>Upgrade to a more recent version of PostgreSQL
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It was all about reducing costs ...
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... and give more flexibility
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Architecture overview
The initial landscape

Managed PostgreSQL
Production

Managed PostgreSQL
Production Replica

Managed PostgreSQL
Production Reporting Replica

Regularly created
from backups

Development
Instances

8TB 8TB

8TB

2TB
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Architecture overview
The initial landscape

Let's do some math!
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Architecture overview
Storage pricing

We'll take 2000 USD per 8TB per month (approx. the average of the three main providers)
>Production: 4000 USD per month

>Reporting: 2000 USD per month

>Development: 1000 USD per month

>Backup storage: 2500 USD per month (half the price)

>9500 USD overall -> 114'000 per year, just for the storage

> This does not include compute and network costs

>This is per end-customer of the customer's customer

> Yes, things can get complicated
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Options
Priority on: Storage reduction

Priority 1: Reduce storage consumption
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Options
Priority one: Storage reduction

What options do we have to reduce storage consumption?
>vacuum full?

> This is a blocking operation

>Getting rid of old data?

> Create an archival strategy

>Optimize how PostgreSQL stores data?

>Compression?

>Getting rid of unused / redundant indexes?

What do all these options do have in common?
>They will not reduce the costs associated to the storage in a public cloud

> None of the major public cloud providers offers a way to reduce the size of volumes
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Options
Priority one: Storage reduction

What options do we have to reduce storage consumption?
>vacuum full?

> This is a blocking operation

>Getting rid of old data?

> Create an archival strategy

>Optimize how PostgreSQL stores data?

>Compression?

>Getting rid of unused / redundant indexes?

What do all these options do have in common?
>They will not reduce the costs associated to the storage in a public cloud

> None of the major public cloud providers offers a way to reduce the size of volumes
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Options
Priority one: Storage reduction

Alignment padding
>An empty row in PostgreSQL

>One SMALLINT column

postgres=# SELECT pg_column_size(row()) as bytes;

 bytes 

-------

    24

(1 row) 

postgres=# SELECT pg_column_size(row(0::smallint)) as bytes;

 bytes 

-------

    26

(1 row)
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Options
Priority one: Storage reduction

Alignment padding
>One BIGINT column

>So what? 

>?? 2 + 8 = 16?

postgres=# SELECT pg_column_size(row(0::bigint)) as bytes;

 bytes 

-------

    32

(1 row)

postgres=# SELECT pg_column_size(row(0::smallint,0::bigint)) as bytes;

 bytes 

-------

    40

(1 row)
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Options
Priority one: Storage reduction

Alignment padding
>The internal alignment in PostgreSQL is 8 bytes

>Fixed length columns that follow each other must be padded with empty bytes in some cases

> Instead of 2+8 the math becomes 8+8 

postgres=# SELECT pg_column_size(row(0::smallint,0::bigint)) as bytes;

 bytes 

-------

    40

(1 row)
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Options
Priority one: Storage reduction

Alignment padding
>Given this simple table

postgres=# create table t ( a boolean, b smallint, c timestamp, d smallint, e bigint );

CREATE TABLE

postgres=# \d t

                           Table "public.t"

 Column |            Type             | Collation | Nullable | Default 

--------+-----------------------------+-----------+----------+---------

 a      | boolean                     |           |          | 

 b      | smallint                    |           |          | 

 c      | timestamp without time zone |           |          | 

 d      | smallint                    |           |          | 

 e      | bigint                      |           |          | 
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Options
Priority one: Storage reduction

Alignment padding
>This is what PostgreSQL knows / sees

postgres=# SELECT a.attname, t.typname, t.typalign, t.typlen

             FROM pg_class c

             JOIN pg_attribute a ON (a.attrelid = c.oid)

             JOIN pg_type t ON (t.oid = a.atttypid)

            WHERE c.relname = 't'

              AND a.attnum >= 0

            ORDER BY a.attnum;

 attname |  typname  | typalign | typlen 

---------+-----------+----------+--------

 a       | bool      | c        |      1

 b       | int2      | s        |      2

 c       | timestamp | d        |      8

 d       | int2      | s        |      2

 e       | int8      | d        |      8

(5 rows)
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Options
Priority one: Storage reduction

Alignment padding
>https://www.postgresql.org/docs/current/catalog-pg-type.html

Value Meaning

c char alignment, no alignment needed

s short alignment (2 bytes)

i int alignment (4 bytes)

d double alignment (8 bytes)

https://www.postgresql.org/docs/current/catalog-pg-type.html
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Options
Priority one: Storage reduction

Creating one million rows in that table

postgres=# insert into t 

           select true

                , 1

                , now()

                , 1

                , i 

             from generate_series(1,1000000) i;

INSERT 0 1000000

postgres=# select pg_size_pretty(pg_relation_size('t'));

 pg_size_pretty 

----------------

 57 MB

(1 row)
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Options
Priority one: Storage reduction

Fixing the column order

>This saved 7MB of overhead!

postgres=# drop table t;

DROP TABLE

postgres=# create table t ( e bigint, c timestamp, b smallint, d smallint, a boolean );

CREATE TABLE

postgres=# insert into t select i

, now()

, 1

, 1

, true from generate_series(1,1000000) i;

INSERT 0 1000000

postgres=# select pg_size_pretty(pg_relation_size('t'));

pg_size_pretty

----------------

50 MB

(1 row)
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Options
Priority one: Storage reduction

The rule for column ordering is
>Large fix sized columns at the beginning

> e.g. BIGINT, TIMESTAMP

>Smaller fixed sized columns after, in decending order of the the size

> e.g. INT then SMALLINT ...

>Variable length columns at the end

> e.g. NUMERIC, TEXT
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Options
Priority one: Storage reduction

Getting the correct column ordering out of the catalog

postgres=# SELECT a.attname, t.typname, t.typalign, t.typlen

FROM pg_class c

JOIN pg_attribute a ON (a.attrelid = c.oid)

JOIN pg_type t ON (t.oid = a.atttypid)

WHERE c.relname = 't'

AND a.attnum >= 0

ORDER BY t.typlen DESC;

attname |  typname | typalign | typlen

---------+-----------+----------+--------

e       | int8      | d        |      8

c       | timestamp | d        |      8

b       | int2      | s        |      2

d       | int2      | s        |      2

a       | bool | c        |      1

(5 rows)
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Options
Priority one: Storage reduction

We've tested that on one of the test environments
>Only fixing the column order resulted in 11% storage reduction

> This is 880 GB per instance!

> Of course changing the column order could force application level changes as well

The only options to implement this?
>Create a new instance

> pg_dump / pg_restore

> Problem: Downtime

>Create a new instance

> Create the schema with the correct ordering of the columns

> Setup logical replication

> Problem: The initial load will take some time

> Problem: Sequences are not replicated

>Both solutions will temporarily increase the storage costs
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The new setup
Setting up logical replication

Managed PostgreSQL
Production, PostgreSQL 11.x

Managed PostgreSQL
Production Replica

PostgreSQL 11.x

Managed PostgreSQL
Logical replication target

PostgreSQL 14.x

8TB 8TB
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PostgreSQL logical replication
A bit of historyA bit of history
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PostgreSQL logical replication
A bit of history

PostgreSQL 9.0 (20-SEP-2010) - out of support!
>Physical replication

>Only between the same major versions of PostgreSQL

PostgreSQL 9.6 (29-SEP-2016) - out of support!
>Logical decoding

> allows extensions to insert data into the WAL stream that can be read by logical-decoding plugins
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PostgreSQL logical replication
A bit of history

PostgreSQL 10 (05-OCT-2017) - out of support
>Logical replication

> Using publish / subscribe

>Restrictions

> No replication of DDL commands

> No replication of sequences

> No replication of TRUNCATE commands

> No replication of LARGE objects

> Only from base tables to base tables

> No views, materialized views, partition root tables, foreign tables

> In case of partitions only to the same partition structure
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PostgreSQL logical replication
A bit of history

PostgreSQL 10 (05-OCT-2017) - out of support

>For all tables

>For a list of tables

>Publication parameters: publish='insert, update, delete'

postgres=# \h create publication

Command:     CREATE PUBLICATION

Description: define a new publication

Syntax:

CREATE PUBLICATION name

    [ FOR TABLE [ ONLY ] table_name [ * ] [, ...]

      | FOR ALL TABLES ]

    [ WITH ( publication_parameter [= value] [, ... ] ) ]

postgres=# 
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PostgreSQL logical replication
A bit of history

PostgreSQL 11 (18-OCT-2018) - out of support November 2023
>Logical replication

> Using publish / subscribe

> Allow replication slots to be advanced programatically - pg_replication_slot_advance()

>Restrictions

> No replication of DDL commands

> No replication of sequences

> No replication of TRUNCATE commands - restriction removed

> No replication of LARGE objects

> Only from base tables to base tables

> No views, materialized views, partition root tables, foreign tables

> In case of partitions only to the same partition structure
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PostgreSQL logical replication
A bit of history

PostgreSQL 11 (18-OCT-2018) - out of support

>For all tables

>For a list of tables

>Publication parameters: publish='insert, update, delete, truncate'

postgres=# \h create publication

Command:     CREATE PUBLICATION

Description: define a new publication

Syntax:

CREATE PUBLICATION name

    [ FOR TABLE [ ONLY ] table_name [ * ] [, ...]

      | FOR ALL TABLES ]

    [ WITH ( publication_parameter [= value] [, ... ] ) ]

postgres=# 
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PostgreSQL logical replication
A bit of history

PostgreSQL 12 (03-OCT-2019) - out of support November 2024
>Logical replication

> Using publish / subscribe

> Allow replication slots to be advanced programatically - pg_replication_slot_advance()

> Allow relocation slots to be copied - pg_copy_logical_replication_slot()

>Restrictions

> No replication of DDL commands

> No replication of sequences

> No replication of LARGE objects

> Only from base tables to base tables

> No views, materialized views, partition root tables, foreign tables

> In case of partitions only to the same partition structure
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PostgreSQL logical replication
A bit of history

PostgreSQL 12 (03-OCT-2019) - out of support November 2024

>For all tables

>For a list of tables

>Publication parameters: publish='insert, update, delete, truncate'

postgres=# \h create publication

Command:     CREATE PUBLICATION

Description: define a new publication

Syntax:

CREATE PUBLICATION name

    [ FOR TABLE [ ONLY ] table_name [ * ] [, ...]

      | FOR ALL TABLES ]

    [ WITH ( publication_parameter [= value] [, ... ] ) ]

postgres=# 
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PostgreSQL logical replication
A bit of history

PostgreSQL 13 (24-SEP-2020)
>Logical replication

> Allow replication slots to be advanced programatically - pg_replication_slot_advance()

> Allow relocation slots to be copied - pg_copy_logical_replication_slot()

> Allow partitioned tables to be replicated, not only the individual partitions

> Allow logical replication into partitioned tables on the subscriber

> Allow control over how much memory is used by logical decoding - logical_decoding_work_mem

>Restrictions

> No replication of DDL commands

> No replication of sequences

> No replication of LARGE objects

> Only from base tables to base tables

> No views, materialized views, partition root tables, foreign tables

> In case of partitions only to the same partition structure
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PostgreSQL logical replication
A bit of history

PostgreSQL 13 (24-SEP-2020)

>For all tables

>For a list of tables

>Publication parameters: 

> publish='insert, update, delete, truncate'

> publish_via_partition_root=true/false

postgres=# \h create publication

Command:     CREATE PUBLICATION

Description: define a new publication

Syntax:

CREATE PUBLICATION name

    [ FOR TABLE [ ONLY ] table_name [ * ] [, ...]

      | FOR ALL TABLES ]

    [ WITH ( publication_parameter [= value] [, ... ] ) ]
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PostgreSQL logical replication
A bit of history

PostgreSQL 14 (30-SEP-2021)
>Logical replication

> Allow replication slots to be advanced programatically - pg_replication_slot_advance()

> Allow relocation slots to be copied - pg_copy_logical_replication_slot()

> Allow partitioned tables to be replicated, not only the individual partitions

> Allow logical replication into partitioned tables on the subscriber

> Allow control over how much memory is used by logical decoding - logical_decoding_work_mem

> Allow streaming of long in-progress transactions

> Various performance improvements

>Restrictions

> No replication of DDL commands

> No replication of sequences

> No replication of LARGE objects

> Only from base tables to base tables

> No views, materialized views, foreign tables
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PostgreSQL logical replication
A bit of history

PostgreSQL 14 (24-SEP-2021)

>For all tables

>For a list of tables

>Publication parameters: 

> publish='insert, update, delete, truncate'

> publish_via_partition_root=true/false

postgres=# \h create publication

Command:     CREATE PUBLICATION

Description: define a new publication

Syntax:

CREATE PUBLICATION name

    [ FOR TABLE [ ONLY ] table_name [ * ] [, ...]

      | FOR ALL TABLES ]

    [ WITH ( publication_parameter [= value] [, ... ] ) ]
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PostgreSQL logical replication
A bit of history

PostgreSQL 15 (13-OCT-2022)
>Logical replication

> Allow replication slots to be advanced programatically - pg_replication_slot_advance()

> Allow relocation slots to be copied - pg_copy_logical_replication_slot()

> Allow partitioned tables to be replicated, not only the individual partitions

> Allow logical replication into partitioned tables on the subscriber

> Allow control over how much memory is used by logical decoding - logical_decoding_work_mem

> Allow streaming of long in-progress transactions

> Various performance improvements

> Allow selective publication

> Column lists and filter conditions

>Restrictions

> No replication of DDL commands

> No replication of sequences

> No replication of LARGE objects
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PostgreSQL logical replication
A bit of history

PostgreSQL 15 (13-OCT-2022)

>For all tables

>Column lists and where conditions

postgres=# \h create publication

Command:     CREATE PUBLICATION

Description: define a new publication

Syntax:

CREATE PUBLICATION name

    [ FOR ALL TABLES

      | FOR publication_object [, ... ] ]

    [ WITH ( publication_parameter [= value] [, ... ] ) ]

where publication_object is one of:

    TABLE [ ONLY ] table_name [ * ] [ ( column_name [, ... ] ) ] [ WHERE ( expression ) ] 

[, ... ]

    TABLES IN SCHEMA { schema_name | CURRENT_SCHEMA } [, ... ]
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PostgreSQL logical replication
A bit of history

PostgreSQL 16 (??-??-2023) - currently in Beta - Please test
>Logical replication

> Allow selective publication

> Column lists and filter conditions

> Allow logical replication from replicas

> Allow logical replication subscribers to apply large transactions in parallel

> Allow parallel application of logical replication

>Restrictions

> No replication of DDL commands

> No replication of sequences

> No replication of LARGE objects
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PostgreSQL logical replication
A bit of history

PostgreSQL 16 (??-??-2023) - currently in Beta - Please test

>For all tables

>Column lists and where conditions

postgres=# \h create publication

Command:     CREATE PUBLICATION

Description: define a new publication

Syntax:

CREATE PUBLICATION name

    [ FOR ALL TABLES

      | FOR publication_object [, ... ] ]

    [ WITH ( publication_parameter [= value] [, ... ] ) ]

where publication_object is one of:

    TABLE [ ONLY ] table_name [ * ] [ ( column_name [, ... ] ) ] [ WHERE ( expression ) ] 

[, ... ]

    TABLES IN SCHEMA { schema_name | CURRENT_SCHEMA } [, ... ]
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PostgreSQL logical replication
A bit of history

PostgreSQL 17 (??-??-2024) - in development
>Logical replication

> Allow selective publication

> Column lists and filter conditions

> Allow logical replication from replicas

> Allow logical replication subscribers to apply large transactions in parallel

> Allow parallel application of logical replication

> Allow replication of DDLs?

> https://commitfest.postgresql.org/43/3595/ 

> Skip replicating the tables specified in except table option?

> https://commitfest.postgresql.org/43/3646/

>Restrictions

> ???

https://commitfest.postgresql.org/43/3595/
https://commitfest.postgresql.org/43/3646/
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PostgreSQL logical replication
A bit of historyArchitecture



27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 49

Logical replication
Architecture

wal_level=logical

max_replication_slots=??

max_wal_senders=??

walsender ----------------> apply

max_replication_slots=??

max_logical_replication_workers=??

max_worker_processes=??

max_sync_workers_per_subscription=??

max_parallel_apply_workers_per_subscription=??

Publisher Subscriber

1. Create schema
2. Create publication

2. Create subscription

3. Initial snapshot and synchronization
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Logical replication
Architecture

REPLICA IDENTITY
>A table must have a replica identity 

> so rows to be updated and deleted can be identified from the subscriber side

>By default this is the primary key

>Otherwise a unique key should be set

>FULL

> Indexes can be used to identify the rows or

> All columns of the table, slower

> Should not be used

postgres=# \h alter table

…

REPLICA IDENTITY { DEFAULT | USING INDEX index_name | FULL | NOTHING }

…



A publisher can also be a subscripber, and vice versa
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Logical replication
Architecture

pub1 

pub2

pub3

sub2

sub1 

sub3 



The same table can be in multiple publications
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Logical replication
Architecture

pub1 
sub3 

t1,t2,t3,t4

pub2 

t1,t4

sub2 pub2 

t10,t11

sub1 
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PostgreSQL logical replication
A bit of history

Returning to the setup
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The new setup
Setting up logical replication

Managed PostgreSQL
Production, PostgreSQL 11.x

Managed PostgreSQL
Production Replica

PostgreSQL 11.x

Managed PostgreSQL
Logical replication target

PostgreSQL 14.x

8TB 8TB
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PostgreSQL logical replication
A bit of history

This did not work!
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The new setup
Issues

Why this didn't work
>The initial load was taking more than a week

>For the target, to save costs, cheaper disks have been chosen

> This slowed down the replication

>The publisher could not remove WAL for a very long time

> Storage increase

> Even more costs

> Indexes and primary keys have not been removed on the subscriber

> More slow down

>More costs for an adittional managed PostgreSQL instance

>Limited insight on what was going on on the operating system

> You don't have access to that in a managed PostgreSQL cloud service
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The new setup
IssuesAnother approach
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The new setup - take two
Setting up logical replication

Managed PostgreSQL
Production, PostgreSQL 11.x

Managed PostgreSQL
Production Replica

PostgreSQL 11.x

Self-Managed PostgreSQL
Logical replication target

PostgreSQL 15.x

8TB 8TB

Introduce partitioning
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The new setup - take two
Advantages / disadvantages

Why self managed on a VM
>Full control of the operating system

> I/O statistics

> Memory

> Network

>We could use the latest version of PostgreSQL (15)

> The managed service only offered 14.x

>Faster to scale up and down

> A VM with PostgreSQL is starting much faster than a managed service

> Much more flexibility with the storage options

>Comes with the possibility for partitionig

> Pre-partition the large tables

> Archive data goes to cheap storage

> Live data is on fast, but more expensive storage

>Cheaper than the managed service
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The new setup
IssuesDid it work?
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PostgreSQL logical replication
A bit of history

No!
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The new setup - take two
Advantages / disadvantages

Why it didn't work as well
>The initial load once more took too long

> Was stopped after one and a half weeks

>We still had the issue with increasing WAL usage on the publisher

> More costs for the expensive managed service on the source
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The new setup
IssuesAnother approach
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The new setup - take two
Next approach

What further was discussed
>Can we setup logical replication based on a backup?

> You can't

> You can only restore into a new managed service using those backups

>Can we create a basebackup from that managed instance and start from there?

> Again, you cannot setup logical replication based on a backup

> In a public cloud you cannot even use pg_basebackup

> You don't have super user permissions

>Can we setup logical replication based on dump?

> Can you?
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The new setup
Issues

Small demo
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PostgreSQL logical replication
Setup logical replication based on a dump

The following is one little shell script, explained step by step
>What it does

> Initialize a small pgbench schema in the source

> Create the same schema, without data, in the target

> Create a publication for three out of the four tables in the source

> Create a subscription for the three tables in the target

> Verify logical replication is fine

> Create a publication for the fourth table in the source

> Create a replication connection to the source database and create a snapshot

> Dump the data of the fourth table from the snaphot

> Load into the target

> Create a subscription for the fourth table starting at the snapshot created above

> Verify that logical replication is working fine
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PostgreSQL logical replication
Setup logical replication based on a dump

The script, explained
#!/bin/bash

# These are the ports of the source and the target instance

SRCPORT=8888

TGTPORT=8889

# Cleanup in case you want to re-run the demo

psql -p 8888 -c "drop publication pub_test";

psql -p 8888 -c "drop publication pub_test_2";

psql -p 8888 -c "drop table 

pgbench_accounts,pgbench_branches,pgbench_history,pgbench_tellers"

psql -p 8889 -c "drop subscription sub_test";

psql -p 8889 -c "drop subscription sub_test_2";

psql -p 8889 -c "drop table 

pgbench_accounts,pgbench_branches,pgbench_history,pgbench_tellers"



27.06.2023Escaping a public cloud using logical replication with minimal downtime Page 68

PostgreSQL logical replication
Setup logical replication based on a dump

The script, explained
# intialize some demo data

pgbench -p ${SRCPORT} -i -s 10 

psql -p ${SRCPORT} -c "\d"

# create one publication for the smaller tables

psql -p ${SRCPORT} -c "create publication pub_test for table       

pgbench_branches,pgbench_history,pgbench_tellers;"

# create the empty schema in the target

pg_dump -p ${SRCPORT} --schema=public --schema-only | psql -p ${TGTPORT}

# create the first subscription for the three tables

psql -p ${TGTPORT} -c "create subscription sub_test connection 'host=localhost 

port=${SRCPORT} user=postgres dbname=postgres' publication pub_test;"

# Get the meta data of the subscription

psql -p ${TGTPORT} -c "select * from pg_subscription;"
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PostgreSQL logical replication
Setup logical replication based on a dump

The script, explained
# Verify that data has been loaded

psql -p ${TGTPORT} -c "select count(*) from pgbench_branches;"

psql -p ${TGTPORT} -c "select count(*) from pgbench_branches;"

# Verify the replication is ongoing

psql -p ${SRCPORT} -c "insert into pgbench_branches values (-1,-1,'aa');"

psql -p ${TGTPORT} -c "select * from pgbench_branches where bid = -1;"

# Create the second publication for the "large" table

psql -p ${SRCPORT} -c "create publication pub_test_2 for table pgbench_accounts;"

psql -p ${SRCPORT} -c "select * from pg_publication;"

# create a snapshot to dump from

# This is a replication connection and must be kept open,

# so you need a new session from here on

psql -p ${SRCPORT} "dbname=postgres port=${SRCPORT} replication=database"

CREATE_REPLICATION_SLOT my_logical_repl_slot LOGICAL pgoutput;
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PostgreSQL logical replication
Setup logical replication based on a dump

The script, explained
# Dump from the snapshot (of course you need to adjust the snapshot ID)

pg_dump -p ${SRCPORT} --snapshot=00000004-00000020-1 -a -t public.pgbench_accounts > 

pgbench_accounts.sql

# Load & verify the data

psql -p ${TGTPORT} -f pgbench_accounts.sql

psql -p ${TGTPORT} -c "select count(*) from public.pgbench_accounts;"

# create the subscription against the slot from above

psql -p ${TGTPORT} -c "create subscription sub_test_2 connection 'host=localhost 

port=${SRCPORT} user=postgres dbname=postgres' publication pub_test_2 with ( slot_name = 

'my_logical_repl_slot', create_slot='false' , enabled='false', copy_data='false');"

# Start the replication

psql -p ${TGTPORT} -c "alter subscription sub_test_2 enable;"
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PostgreSQL logical replication
Setup logical replication based on a dump

The script, explained
# Verify ongoing replication

psql -p ${SRCPORT} -c "insert into pgbench_accounts select i,i,i,i::text from 

generate_series(1000001,1000100) i;"

psql -p ${TGTPORT} -c "select count(*) from public.pgbench_accounts ;"

# Exit from the replication connection

\q
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The new setup
Issues

What we finally had to do
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The final setup
What we had to do

The final setup was still this, but ...

Managed PostgreSQL
Production, PostgreSQL 11.x

Managed PostgreSQL
Production Replica

PostgreSQL 11.x

Self-Managed PostgreSQL
Logical replication target

PostgreSQL 15.x

8TB 8TB

Introduce partitioning
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The final setup
What we had to do

The final setup was still this, but ...
> Instead of using only a few publication and subscriptions

> Seperate the setup of logical replication into smaller pieces

> Small schemas got their own publications and subscriptions

> Larger schemas were broken up

> This is easy if there are no foreign keys

> When there are, put related tables in a separate publication / subcription

> The three largest tables got their own publication / subcription

> Downside?

> Creating more pulications requires?

> Increasing max_replication_slots, which requires?

> A restart of production

>Sequences need to be replicated manually at the time of the switch
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The final setup
What we had to do

Other reasons for the self managed target setup
>We have a real superuser

>The next step (if required) becomes much easier

> Going back on-prem

What options do we have now?
>Once more using logical replication, or

>Create a physical replica on-prem and let it catch up

> We can now use pg_basebackup

> This will usually introduce costs for outgoing network traffic
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Lessons learned
(at last for the customer)
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Lessons learned

When you decide to go for a managed service in a public cloud
>Make yourself familiar with the costs

> There are costs for storage

> Don't forget the storage costs for backups

> There are costs for compute

> There might be costs for network traffic

> The faster you want to go, the more costs you will generate

>Make youself familiar with the limitations

> No superuser

> What extensions do you need?

> What are the possibilities when it comes to monitoring?

>Think about how you can escape such a service in advance

> Once you need to, the strategy should be there

> ... and the strategy must have been tested



Any questions?

Please do ask!

We would love to boost  
your IT-Infrastructure

How about you?

Zürich

Basel
Delémont

Nyon

Bern
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