Collations in PostgreSQL.:
The good, the bad and the ugly.

COLLATIONS IN POSTGRESAL:
THE GOOD, THE BAD AND THE UGLY

Swiss PGDay 2022, Rapperswil

ﬁ

Tobias Bussmann

2022-07-01



OVERVIEW

What are collations?

the good: practical use for developers
the bad: things to watch out for

the ugly: avoid data corruption
History / Future



WHAT ARE COLLATIONS?

e j18n (internationalisation) feature
e part of locale
e related to encoding



LOCALE

Set of parameters to tell an application how users would expect it’s output (and behaviour).

On *NIX traditionally set by environment variables:

e LANG: default main ‘switch’ (preferred)

e L.C ALL:fortemp. override

e IL.C MESSAGES: Language of user interface, LANGUAGE for a preference list
e I.C TIME:format of date and time

e LC NUMERIC:decimal delimiter, grouping

e .C MONETARY: Currency format and symbols

‘T,C CTYPE -haracter classification, case folding
LC COLLATE tringcollation rules

Applied: (LANGUAGE) > LC ALL > LC * > LANG



COLLATIONS

e order of characters
e |ike learnt in elementary school
e simple but depending on culture



HOW ARE COLLATIONS RELEVANT?

ORDER BY:order of output
WHERE : searching data
JOIN:combining data

UNIQUE: define a sense of equality
PARTITON BY:distributing data

Often supported by Indexes.



PROVIDERS

Functionality provided by the OS Different implementations

e POSIX: 1ibc (Linux: glibc, uClibc; *BSD 1libc;
Windows: msvert; macOS: 1ibSystem)
must match encoding

e |CU: common, portable library
supported for most encodings, mainly UTF8

libc ICU
strcoll ucol strcoll
strxfrm ucol getSortKey




strcoll

decide if one string is smaller, equal or greater then a second one

e <0:stringl lessthan string2
e (:stringl identical to string2
e >0:stringl greater than string2



UNICODE NORMAL FORMS

Unicode: &typhs Graphemes, Codepoints, Encodings

e composition
s NFC/NFKC: composed form: A (U+O0C4)

s NFD/NFKD: decomposed form a+:: (U+0041 U+0308)
e equivalent (NFC/NFD) vs. compatible (NFKC / NFKD)

= equal glyphs, meaning

= variants, formatting, functions

UTR #15: UNICODE NORMALIZATION FORMS Full chart



https://www.unicode.org/reports/tr15/
https://unicode.org/charts/normalization/index.html

THE GOOD

powerful support in PostgreSQL




NORMAL FORMS IN POSTGRESAL

e check
text IS [NOT] [form] NORMALIZED - boolean

e convert
normalize( text [, form ] ) - text

form is key word: NFC (default), NFD, NFKC, or NFKD




NON-DETERMINISTIC COLLATION

Depending on the use case differences may be irrelevant:

e Case:a=A

e Normal form a+{ ;=3
e Accent:a=a

e Phonebook: a =ae

By default if strcoll = 0, strcmp is used as a tie-breaker, unless the collation is not
defined non-deterministic.




COLLATE CGLAUSE

e per Expression
WHERE a < b

COLATE "C"

ORDER BY city COLLATE "de CH"

e per Column or Index
CREATE TABLE t (c TEXT COLLATE "en US")

CREATE INDEX ON t (c COLLATE "cs CZ")

e per Domain (anc

Composite and Range Types)

Default collata

ole types: TEXT, VARCHAR, CHAR




ORDER OF PRECEDENCE

1. explicit in expression
2. from column /domain
3. database default

Must be unambiguous, but 2. can mix collations in case the operator does not require a
collation( | | vs. >)

Useful for testing:
COLLATION FOR (<expression>) canreturn NULL if undefined/ mixed




DEFAULT COLLATIONS

Collation not configurable in Session or Config, no GUCs like datestyle

e compile time: ——-with-icu

e cluster creation: inherited from environment or set explicitly
initdb --encoding= --locale= --1lc-collate= --lc-ctype=

e database creation: inherited from template
CREATE DATABASE name [ENCODING [=] encoding] [LC COLLATE [=]
lc collate] [LC CTYPE [=] lc ctypel];

where is ICU on cluster/db level?




CU AS DEFAULT COLLATION

e cluster creation:
initdb --locale-provider=icu --icu-locale= icu locale

e database creation:
CREATE DATABASE name LOCALE PROVIDER = icu | ICU LOCALE [=]
icu locale ]

icu locale isICU locale ID, not PostgreSQL collation object name POSIX locale
needs to be set as well

no non-deterministric default collations



CREATE COLLATIONS: SYSTEM

Provided by external libraries with their rule definition sets:

LIBC

S locale -a toshow all available locales

S locale toshow current settings

$ locale -ck LC ALL toshow it’s definition
/etc/locale.gen add/uncomment locale name
and compile using $ locale-gen script

use your package manager / vendor specific script
localectl

you can view the sources. Watch out for symlinks in
generated locales

ICU

e APIs
ucol countAvailable()
ucol getAvailable()
ucol getDisplayName/( )
e CLDR: Common Locale Data
Repository
cldr.unicode.org, interactive
Drowser
e | DML: Locale Data Markup
_anguage (UTS #35)
github.com/unicode-org/cldr
as Chart



http://cldr.unicode.org/
http://demo.icu-project.org/icu-bin/locexp
http://unicode.org/reports/tr35/tr35-collation.html
https://github.com/unicode-org/cldr
https://www.unicode.org/cldr/charts/36/collation/index.html

CREATE COLLATIONS: DB

e first the rules need to be known to the OS

e during initdb all available collations are registered in template0 catalog
pg collation,canbere-runlater per DB: pg import system collations()
® |libc locale -a,adds aless platform specific alias

" |CU uloc getAvailable() and uloc getDisplayName, appends -x-icu to
name
e CREATE COLLATION command

CREATE COLLATION [ IF NOT EXISTS ] name (
LOCALE = locale, ]

LC_COLLATE = lc_collate, ]

LC CTYPE = lc _ctype, ]

PROVIDER = provider, |
DETERMINISTIC = boolean, ]

VERSION = version ]

L T s B o B e I s B e |

)
CREATE COLLATION [ IF NOT EXISTS ] name FROM existing collation

e PROVIDER: libc / icu
e LOCALE:shortcutfor LC_ COLLATE and LC CTYPE




SELECT * FROM pg collation;
\dOS+

[local] bussmann@~=# \dOS+ dex*

List of collations

Schema Name Collate Ctype Provider Deterministic? Description
pg catalog de-AT-x-icu de-AT de-AT icu yes German (Austria)
pg _catalog de-BE-x-icu de-BE de-BE icu yes German (Belgium)
pg catalog de-CH-x-icu de-CH de-CH icu yes German (Switzerland)
pg catalog de-DE-x-icu de-DE de-DE icu yes German (Germany)
pg catalog de-IT-x-icu de-IT de-IT icu yes German (Italy)
pg catalog de-LI-x-icu de-LI de-LI icu yes German (Liechtenstein)
pg catalog de-LU-x-icu de-LU de-LU icu yes German (Luxembourgqg)
pg catalog de-x-icu de de icu yes German
pg catalog de AT de AT de AT libc yes
pg catalog de AT.UTF-8 de AT.UTF-8 de AT.UTF-8 libc yes
pg catalog de CH de CH de CH libc yes
pg catalog de CH.UTF-8 de CH.UTF-8 de CH.UTF-8 libc yes
pg catalog de DE de DE de DE libc yes
pg catalog de DE.UTF-8 de DE.UTF-8 de DE.UTF-8 libc yes
pg catalog default default yes database's default coll

(15 rows)




LOCALE NAME SYNTAX

e POSIX:
language[ TERRITORY][.codeset][@modifier]

= de DE.ISO-8859-15€@euro
= ca ES.UTF-8@valencia
= de CH.utf8

e BCP47.
language[-Script][-REGION][-unicodeextension-x-privateuse]

" de-u-co-phonebk-kn-true-ks-level?2
» sr-Cyrl-XK (Serbian, Cyrillic, Kosovo)
= en
e Legacy ICU:
[ language[ Script][ REGION]][@key=value][;key=value]...]
" de DE@collation=phonebook,colNumeric=yes,colStrength=secondary
s @collation=emoji (using ‘root’ collation)
" de@collation=phonebook

.11



BCP47 UNICODE EXTENSION

e Tailoring of collation behaviour from CLDR

e Syntax of defined in RFC6067:
[-u-key-type[-type]...][-key-type[-type]...]]...] keysunique

e keys and types defined in LDML / UTS#35, as XML (with alias names), interactive demo

key type description

co standard, phonebk, Collation type. e.g. Traditional Spanish ordering, Phonebook ordering
search, trad, emoji,
phonetic

ks levell, level2, level3, Maxcollationstrength: Primary: base letters, Secondary: accents, Tertiary: mainly case,
level4d, identic Quaternary: used in some collations, identical: unicode codepoints (like ucs basic)

kb true, false Sort second level (accents) backward: e.g. Canadian French

kc true, false Insert and use a strict case level between second and third level. Useful when ignoring

accents (levell)

kf upper, lower, false Force to sort upper or lower case first

kk true, false Normalise to NFD before sorting

kn true, false Use natural sort for numbers. Useful for filenames, addresses.

kr digit, space, grek, Order of character classes. Multiple types
latn,...



https://tools.ietf.org/html/rfc6067
https://www.unicode.org/reports/tr35/tr35-collation.html#Collation_Settings
https://github.com/unicode-org/cldr/blob/master/common/bcp47/
http://demo.icu-project.org/icu-bin/collation.html

1O DISARM THE BOMB,
SMPLY ENTER A VALID
tar COMMAND ON YOUR
FIRST TRY. NO GOOGLING.




SPECIAL COLLATIONS

not ICU dependent:

e "default":database default collation

e "C" = "POSIX":byencoded byte value

e "ucs basic":for UTF8 by Unicode code points
ICU:

e "und-x-icu": ‘root’ collation (DUCET) with a reasonable language-agnostic sort order
UTS #10: UNICODE COLLATION ALGORITHM, as chart

e 'und-u-co-eor' European Ordering Rules

e 'und-u-co-emoji': ‘root’ collation with Emoji ordering (note: does conflict with
languages), UTS #51: UNICODE EMOJI



https://www.unicode.org/reports/tr10/
https://unicode.org/charts/collation/index.html
https://www.unicode.org/reports/tr51/

CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE

COLLATION
COLLATION
COLLATION
COLLATION
COLLATION
COLLATION
COLLATION
COLLATION
COLLATION

SELECT * FROM

regexp split to table('a.b,aa,ab,a.d,a..b,a???c, ab'
ORDER BY x COLLATE "und-ignorepunctuation";

X

aa
ab
ab
a.b
a..b
az???c
a.d

"de-phonebook™

"de-natural”
"de-listing"
"und-emoji"

"und-normalize"

"und-nocase"

"und-noaccent"
"und-noaccent-nocase"
"und-ignorepunctuation”

USEFUL COLLATION DEFINITIONS

(provider = icu, locale = 'de-u-co-phonebk');
(provider = icu, locale = 'de-u-kn-true');
(provider = icu, locale = 'de-u-co-phonebk-kn-true-ks-level2', deterministic =
(provider = icu, locale = 'und-u-co-emoji');

(provider = icu, locale = 'und-u-kk-true', deterministic = false);
(provider = icu, locale = 'und-u-ks-level2', deterministic = false);

(provider = icu, locale = 'und-u-ks-levell-kc-true', deterministic = false);

(provider = icu, locale = 'und-u-ks-levell', deterministic = false);
(provider = icu, locale = 'und-u-ks-level3-ka-shifted', determinist

# SELECT upper('i'
initcap( 'BuBmann'

COLLATE "tr-x-icu'),
COLLATE "C");

upper initcap

I BuBMann

# SELECT * FROM
regexp split to table('file-1,file-10,file-2,file-9"',
ORDER BY x COLLATE "de-natural';

X

file-1
file-2
file-9
file-10




WORKAROUNDS THAT MAY BE REPLACED

citext extension

unaccent extension

Order / Compare / Index on function: lower (x) /
my recursive natural sort(x)

+=EKE

Sort within application
Many bugs due to unexpected, undetermined sort order
More bugs due to different understanding what ‘unique’ means




THE BAD

Things to watch out for



PERFORMANCE

e | ocale-aware comparisons are slower vs. locale C: strcoll is more expensive, needs
NUL-terminated strings (requires strcpy) and possibly strcmp as tie-breaker.
e Using ICU may require encoding conversion.
e Several optimisations may not be usable:
= Abbreviated keys, a powerful btree optimisation introduced with 9.5 had to be
disabled in 9.5.2 due to bugs in glibc’s implementations of strxfrm in several
locales. The APl promise strcoll(a,b) == strcmp( strxfrm(a),
strxfrm(b) ) didn’t hold. Itis still available in C (using only strcmp anyhow) or if
compiled with TRUST STRXFRM.
o With ICU collations it is available again, often even faster and with a wider platform
support.
= Non deterministic collations (ICU only) are slower then deterministic ones, as they need
to use the locale-aware comparison even if only equality needs to be tested.
o But they should perform better than the functional / extension workarounds.



AVAILABILITY

Locales need to be present in the OS

= With ICU: CREATE COLATION "superpower" (provider=icu,
locale="'invalid-like-hell'); does not throw an error. No check if collation
definition is valid and in CLDR. Instead, fazzy well-defined fallback till root collation.

= Tip: Extension icu ext provides icu collation attributes() tocheckhowa
Collation ID is interpreted by the library.

1libc collations need to match Encoding

OS need not to lie about their collation support

= thereis no POSIX collation support for Unicode encoding in *BSD,
incl. Darwin/macOS. (Illumos, Dragonfly and FreeBSD did some joint work in 2015)

Non-Deterministic collations cannot be used as default collation


https://github.com/dverite/icu_ext

PATTERN MATCHING - PERFORMANCE

e |ocale aware index not useable for pattern matching, as collations are context-sensitive:
= in Czech alphabet: ...b, e, 4, ... h,ch, i...
SO abc < abcz < abch

# SELECT 'c' < 'd' COLLATE "cs-x-icu”", 'ch' < 'd' COLLATE "cs-x-icu';

?2column?

2column?

t

f

e anindexusinge.g. cs CZ.UTF-8 issorted accordingly and cannot be used to fulfil a
condition like WHERE col LIKE 'abc%'.

e As aworkaround either create an index with explicit COLLATE "C" or using the
text pattern ops opclass. Inthat case location-unaware comparison operators are

used: ~>~, ~>

I I

» opclasses gin trgm ops / gist trgm ops forindex-supported trigram pattern
matching from the pg trgm extension are not locale aware, too.



\d cz test
Table "toolbox.cz test”

Column Type Collation Nullable Default

t text cs CZ

Indexes:

"cz test t idx" btree (t)
"cz test t idx1l" btree (t COLLATE "C")
"cz test t idx2" btree (t text pattern ops)

# EXPLAIN (COSTS OFF) SELECT * FROM cz test WHERE t LIKE 'abc%';
QUERY PLAN
Index Only Scan using cz test t idx2 on cz test
Index Cond: ((t ~>=~ 'abc'::text) AND (t ~<~ 'abd'::text))
Filter: (t ~~ 'abc%'::text)
# DROP INDEX cz test t idx2;
# EXPLAIN (COSTS OFF) SELECT * FROM cz test WHERE t LIKE 'abc®%';
QUERY PLAN
Index Only Scan using cz test t idxl on cz test
Index Cond: ((t >= 'abc'::text) AND (t < 'abd'::text))
Filter: (t ~~ 'abc%'::text)
# DROP INDEX cz test t idxl;
# EXPLAIN (COSTS OFF) SELECT * FROM cz test WHERE t LIKE 'abc%'

QUERY PLAN

Seq Scan on cz test
Filter: (t ~~ 'abc$%'::text)

we



PATTERN MATCHING - FEATURE

e pattern matching not possible for non-deterministic collations

# SELECT 'BufBmann' LIKE 'BUS%' COLLATE "und-nocase'";
ERROR: nondeterministic collations are not supported for LIKE

Why?

# SELECT upper('B' COLLATE "de-DE-x-icu"), lower('SS' COLLATE "de-DE-x-icu");
[ [ |

| upper | lower |

| | |

| ss | ss |

I I I

(1 row)

e Same for ~

e As aworkaround for case-insensitive matching: assigh COLLATE "C" anduse ILIKE or

~ %

= to speed-up, create an index with COLLATE "C" andopclass gin trgm ops /
gist trgm ops tosupport



THE UGLY

avoid data corruption



COLLATION ORDER IS NOT FIXED.

e OS: Collation data does change. Collation providers get bugs fixes.
e DB: Order is persisted in indexes, behaviour is build upon.

e |f these collide, bad things can happen - without even noticing.

= |ndex corruption: Some queries may not find certain records anymore, Joins behave
strangely. SET enable indexscan = OFF; and datareappears

= Constraint violation: Duplicated values in UNIQUE / PK column. CHECK -Constraints
not respected.

= Partition routing: rows are inserted or searched in the wrong partition
= Unlikely PostgreSQL will throw an error about that.

e Different OS/ collation provider versions: Same query, same data but different results



LIBC UPDATES

e Depending on the policy of the OS distribution. Likely during major updates, bugfixes may
be included earlier
e glibc 2.28 (released 2018-08-01) was is a particularly dangerous update.

Updates locale data according to ISO/IEC 14651:2016, which was synchronised with
Unicode 9

Last big update in 2000/2001, since then only minor changes in single collations on a
case-by-case basis

Changes lots of popular collations (even en US) in an obvious way. Minimal test: (
echo "1-1"; echo "11" ) | LC COLLATE=en US.UTF-8 sort

Known to be updated in Debian 10, Ubuntu 18.10, RHEL & CentOS 8, Fedora 29, ...
Further updates to be expected ISO/IEC 14651:2019



e Atriskif 1ibec /OSisupdated and:

» PostgreSQL data directory kept (same or only minor PostgreSQL update)

= data directory updated using pg upgrade
e Atrisk if running multiple servers with different versions and:

= Using physical / streaming replication (standby affected)

= Restoring physical backups made on a different environment (e.g. pg basebackup)
e Noriskif:

= running in C locale only

= restoring from logical backup (pg dump)

= using logical replication (receiver unaffected)



VERSIONING TO THE HELP

 most collation providers support versioning of collation data

e Versionisrecordedin pg collation.collversion when collationis created

e Current version can be checked using pg collation actual version()

e This check is done when the collation is first used after start, in case of mismatch a waring
Is emitted:
WARNING: collation "name" has version mismatch

 Aftanually dealing with the isserge
ALTER COLLATION name REFRESH VERSION;

ALTER DATABASE name REFRESH COLLATION VERSION;
e |t helps if packager of PostgreSQL maintains a dedicated 1ibicu, too



MITIGATIONS AFTER COLLATION CHANGE

e REINDEX allindexeson text, varchar, char, and citext that are not using one of
the collations C, POSIX, ucs basic (deterministic)
= not easily possible to decide if necessary, amcheck extension may help

e review partitioning keys for PARTITION BY RANGE. If affected, reroute tuples

manually or run pg dump with option --load-via-partition-root
e Do logical replication to new database / cluster



HISTORY / FUTURE



HISTORY OF LOCALE SUPPORT

e 6.1(1997):initial cluster wide locale support (Oleg Bartnunov, ...)

e 8.1(2005): initial ICU support, replacing the POSIX one by a patch for FreeBSD port (Palle
Girgensohn)

e 8.3(2008): FreeBSD patch updated to UTF8 to eliminate conversion to UTF16 (Petr
Jelinek, Palle Girgensohn)

e 84(2009): database-level LC COLLATION and L.C CTYPE (Heikki Linnakangas, Radek
Strnad)

e 9.1(2011): collation support for columns, domains, and expressions, COLLATE clause, B-
tree index support. (Peter Eisentraut)

e 9.6(2016): FeeBSD patch updated with column and expression support (Palle Girgensohn)

e 10(2017): Collation provider infrastructure, ICU collation support (different
implementation from FreeBSD) (Peter Eisentraut)

e 12(2019): non deterministic collations for ICU (Peter Eisentraut)

e 13(2020): glibc & Windows Collation Version Support (Thomas Munro), Unicode
normalizing functions (Peter Eisentraut)

e 14(2021): BSD Collation Version support (Thomas Munro)

e 15(2022): ICU Collations as default for cluster/db, per DB version support (Peter
Eisentraut) 2



FUTURE

e Allow to load multiple version of the ICU library at runtime

e | ouder error on collation mismatch

e Move version tracking from the collation object to individual database objects that use it.
Complex patch has been reverted from pg14 Julien Rouhaud, Thomas Munro
= finer granularity
= Tracking of use & version of default collation

e Improve handling of pg upgrade regarding collation versions in catalog



Swiss PostgreSQL Users Group
WWW.SWISSpUg.org

Swiss PGDay 2023: tba.
www.pgday.ch

Tobias Bussmann
t.bussmann@gmx.net

GitHub
tbussmann

Twitter
TobiasBussmann


https://www.swisspug.org/
https://www.pgday.ch/
mailto:t.bussmann@gmx.net
https://github.com/tbussmann
https://twitter.com/TobiasBussmann

