
Building a Lightweight High Availability Cluster
Using RepMgr

Stephan Müller

June 29, 2018

Schedule

Introduction
Postgres high availability options
Write ahead log and streaming replication
Built-in tools

Cluster management with RepMgr
Configuration and usage
Automatic failover with RepMgrD

Backup and Recovery with BarMan
Configuration and usage

Wrap-up & Discussion
Please ask questions

Personal Background

IT Operations, since 2.5 years
OLMeRO

Swiss market leader for internet solution for construction sector
Tender and construction site management

renovero.ch
Craftmens’ offerings for private customers

Belongs to tamedia portfolio
Publishing company
Digital market places

Mathematics and Computer Science in Berlin
Cryptography, Category Theory

Thank you PGDay.ch’17

Postgres High Availability Options on Different Layers

Hardware
SAN
Transparent to OS and postgres
Fails spectacularly

Operating system
Distributed Replicated Block Device (DRDB)
SAN in Software

Database physical
WAL based: Log shipping (≥ v8.3)
WAL based: Streaming replication (≥ v9.0)

Database logical
PGDay.ch’18: Harald Armin Massa → 11:00
FOSDEM’18: Magnus Hagander

App-in-db
Slony-I (trigger based)

Application

https://fosdem.org/2018/schedule/event/postgresql_replication_in_2018/

Introduction: Postgres Write Ahead Log

Before committing any transaction (i.e. set state COMMITTED
in clog), the transaction is written to WAL and flushed to disk
One big virtual file (16 EB)
Divided into logical files (4 GB)
Divided into segments (16 MB)

This is what you see on your disk
pg xlog/ 0000000A︸ ︷︷ ︸

timeline

0000083E︸ ︷︷ ︸
block

000000B1︸ ︷︷ ︸
segment

Divided into pages (8 KB)
Contains xlog records with transaction data
Log Sequence Number (LSN) is a byte address in WAL
SELECT pg current xlog location(); 83E/B18FE7C0

Address 8FE7C0 in segment 0000000A0000083E000000B1

Introduction: Postgres Write Ahead Log

BEGIN; INSERT INTO foo VALUES(’bar’); COMMIT;
Each page has a pg lsn attribute:

Contains the LSN of the last xlog record which modified that
page

Recovery After a Crash Using the Write Ahead Log

Your server just crashed
After a restart:
Uncommitted data?

It’s lost.
Committed but not yet written to db?

Start replaying missing records from WAL
Where to start?
Form last checkpoint. Location saved in pg control file
pg controldata /your/data/dir

Corrupted page writes?
full page writes = on

Insert complete backup of pages into WAL
That makes your WAL so big: ∼8K for each modified page

In short: Write Ahead Log is the D in ACID

Write Ahead Log and Streaming Replication

Idea: Copy WAL to other postgres servers
Remote server indefinitely replays from WAL

Log Shipping: ”Just copy WAL segments”
Streaming Replication: Copy individual xlog records

Different levels of replication: synchronous commit

o f f Everywhere asynchronous
l o c a l Locally synchronous, remote asynchronous
on Wait until remote server has written to WAL
r e m o t e a p p l y Wait until remote server has commited

synchronous standby names

Tradeoff: Saftey vs Performance
Tunable on transaction level

Postgres Streaming Replication Benefits

Built-in
Easy to set up
Hard to break
Easy monitoring: All or nothing

SELECT ∗ FROM pg stat replication;

p i d | 20841
usename | repmgr
a p p l i c a t i o n n a m e | db02 remote server
backend xmin | 294106915
s t a t e | s t r e a m i n g OK
s e n t l o c a t i o n | 83E/ F92947F0
w r i t e l o c a t i o n | 83E/ F92947F0 in memory
f l u s h l o c a t i o n | 83E/ F92947F0 on disk
r e p l a y l o c a t i o n | 83E/F92947B8 applied to db
s y n c s t a t e | as ync
[. . .]

Streaming Replication: Easy Setup

Prepare primary:
postgres .conf
l i s t e n a d d r e s s e s = ’ 1 9 2 . 1 6 8 . 0 . 1 0 ’

m a x w a l s e n d e r s ≥ #nodes + 2
w a l l e v e l = r e p l i c a

w a l l o g h i n t s = on for pg rewind

Special user:
CREATE ROLE r e p u s e r WITH REPLICATION

Dont forget hba.conf and your firewall
Prepare standby:

pg basebackup −h p r i m a r y −P −U r e p u s e r −X −R

postgres.conf:
h o t s t a n d b y = on

Adjust recovery .conf
Done. Ok, it is more complicated but not much

Cluster Management Solutions

At the end of the day: You want an easy failover solution.
Patroni

Focuses on automatic failover
Based on etcd / zookeeper

RepMgr
Wraps built-in commands
Focuses on manual failover
Automatic failover with repmgrd
Very slim

PAF (postgres automatic failover)
Focuses on automatic failover
Based on corosync / pacemaker
Using virtual IPs

Overview: RepMgr (Replication Manager)

https://repmgr.org/ (Source on github)
Developed by 2ndQuadrant, written in C
Packaged for most distributions

Use 2ndQuadrant repository
Depending on your postgres version:
dnf i n s t a l l repmgr96 (or repmgr10, etc)

Few dependencies to build from source
Well documented

Only manual failover (i.e. switchover)
Tuneable to automatic failover
Plays well with BarMan (Backup and Recovery Manager)

https://repmgr.org/
https://github.com/2ndQuadrant/repmgr

Setting up RepMgr on Primary

Start with your primary postgres node
Create repmgr user (superuser or replication privilege)
c r e a t e u s e r −s repmgr

Create db for metadata
c r e a t e d b repmgr −O repmgr

Adjust hba.conf
Allow repmgr user to connect to its db, local and remotely

Prepare repmgr.conf
n o d e i d = 1
node name = db01 dont use role names
c o n n i n f o = ’ h o s t=db01 . o lmero . ch

u s e r=repmgr
dbname=repmgr ’

RepMgr Usage: Start a Cluster

General pattern: repmgr [options] <object> <verb>

object ∈ {primary, standby, node, cluster , witness}
verb ∈ { register , clone, follow , switchover, check, show, . . .}
Register primary node

repmgr p r i m a r y r e g i s t e r

Installs some extensions
Adds entry to repmgr database

SELECT ∗ FROM repmgr . nodes ;
n o d e i d | 1
u p s t r e a m n o d e i d |
a c t i v e | t
node name | db01
type | pr imary
l o c a t i o n | d e f a u l t
p r i o r i t y | 30
c o n n i n f o | hos t=db01 . o lmero . ch dbname=repmgr u s e r=repmgr
r e p l u s e r | repmgr
s l o t na me |
c o n f i g f i l e | / e t c / repmgr . con f

RepMgr Usage: Adding Nodes to Your Cluster

Start with empty data directory
Copy and modify repmgr.conf from primary:
n o d e i d = 2
node name = db02
c o n n i n f o = ’ h o s t=db02 . o lmero . ch

u s e r=repmgr
dbname=repmgr ’

Clone primary server
repmgr −h db01.olmero.ch s t a n d b y c l o n e

Executes a basebackup
pg basebackup −h node1 −U repmgr −X stream

Prepares recovery.conf

RepMgr Usage: Adding Nodes to Your Cluster (cont)

recovery.conf:
standby mode = ’ on ’
r e c o v e r y t a r g e t t i m e l i n e = ’ l a t e s t ’
p r i m a r y c o n n i n f o = ’ h o s t = db01.olmero.ch

u s e r = repmgr
a p p l i c a t i o n n a m e = db02 ’

restore command = ’ / u s r / b i n /barman−wal−r e s t o r e
barman olmero %f %p ’

Start postgres server - Done.
Streaming replication is running

RepMgr Usage: Change Primary

View your cluster: (run on any node)
repmgr c l u s t e r show

ID | Name | Role | S t a t u s | Upstream | L o c a t i o n
−−−+−−−−−−+−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−

1 | db01 | p r i m a r y | ∗ r u n n i n g | | d e f a u l t
2 | db02 | s t a n d b y | r u n n i n g | db01 | d e f a u l t
3 | db03 | s t a n d b y | r u n n i n g | db01 | d e f a u l t

Switch over to other primary: (run on new primary)
repmgr standby switchover

You want to start with a healthy cluster
Shutdown primary (service stop command)
Promote local (service promote command)
pg rewind old primary
Restart and rejoin old primary

Manual Failover with RepMgr

Promote a standby:
Make sure your old primary is dead and will stay dead
Choose a standby and run
repmgr s t a n d b y promote

Calls service promote command from repmgr.conf

Change the upstream node for your other standbys
repmgr s t a n d b y f o l l o w

Tell your applications about the new master
Use a connection pooler to separate your application and
database
For example: pg bouncer

Your old primary is trashed
Delete and clone from new primary

Automatic Failover with RepMgr: Overview

A repmgrd runs on each postgres node
repmgrd uses metadata table from repmgr db

It knows your postgres cluster
But it is not aware of other repmgrds
The repmgrds are not a cluster themselves (unlike etcd)

repmgrd PQpings the clusters primary and its ”local” node
On failure: repmgrd on a standby promote its local node

Automatic Failover with RepMgr: Configuration

Shared configuration: /etc/repmgr.conf

f a i l o v e r = a u t o m a t i c
p r i o r i t y = 100
r e c o n n e c t a t t e m p t s = 10
r e c o n n e c t i n t e r v a l = 20
promote command = repmgr s t a n d b y promote # No

Lastest LSN overrules priority
No fencing! Only rudimentary checks are done
Use a wrapper to do all the logic:

promote command = / your / f a n c y / f a i l o v e r / s c r i p t . py

STONITH in software
Eventually call repmgr standby promote
In doubt, leave it out

BarMan: Backup and Recovery Manager

https://www.pgbarman.org/

Developed by 2ndQuadrant, written in Python 2
Packaged for most distributions

dnf install barman
dnf install barman−cli (on your postges nodes)

Physical backups
Fast recovery
Point In Time Recovery (PITR)
No logical backups

Onsite and offsite backups possible
Restore functionality

https://www.pgbarman.org/

BarMan: Overview

Think: ”A postgres node without postgres”
Copies your data directory

pg basebackup
rsync

Uses streaming replication for continuous WAL archiving
pg receivexlog

On barmans disk:
/ data1 /barman/ olmero / b a s e :
20180626 T013002/ your data dir
20180627 T013002/

/ data1 /barman/ olmero / w a l s :
[. . .]
0000002 E0000084B/ all wal segments
0000002 E0000084C/
0000002 E0000084D/
0000002E . h i s t o r y

BarMan: Configuration

Everything in barman.conf

[o lmero]
c o n n i n f o = host=db01.olmero.ch user=barman

dbname=postgres
s t r e a m i n g c o n n i n f o = host=db01.olmero.ch user=barman

backup method = rsync
ssh command = ssh postgres@db01.olmero.ch -c arcfour

r e u s e b a c k u p = link
p a r a l l e l j o b s = 4

s t r e a m i n g a r c h i v e r = on ; stream wals
s l o t n a m e = barman01 ; use a replication slot

Point barman to your postgres primary
Additionally:

Passwordless SSH login
DB connection with replication privilege

BarMan: Commandline Usage

barman backup olmero
Basebackup via rsync
Start pg receivexlog

barman list backups olmero

20180627 Wed Jun 27 04:40:39 - Size: 468.3 GiB - WAL Size: 8.5 GiB
20180626 Tue Jun 26 04:58:48 - Size: 468.4 GiB - WAL Size: 9.5 GiB

barman check olmero −−nagios
BARMAN OK - Ready to serve the Espresso backup for olmero

barman replication −status show
Pretty print ”SELECT ∗ FROM pg stat replication;”

BarMan: How to Restore a Backup

Restore from backup:
barman r e c o v e r o lmero l a t e s t

/ data / d i r
−−remote−ssh−command ” s s h p os t gr es @d b 01 ”
<r e c o v e r y −t a r g e t>

Use appropriate recovery target
−−t a r g e t −t ime ”Wed Jan 01 09 : 3 0 : 0 0 2018 ”
−−t a r g e t −x i d 128278783
−−t a r g e t −name ” f o o ” # SELECT pg create restore point(’foo’)
−−t a r g e t −immediate # o n l y r e c o v e r base backup

Restores basebackup via rsync
Prepares recovery .conf:

barman−wal−restore −U barman barman01 olmero %f %p

Start your postgres server

BarMan and Failover

Barman has no daemons, no extra processes
Everything is a cron job

Barman is not aware of your cluster
Check regularly for a new primary

You have to write a custom script
Adjust config
Start streaming from new primary
barman receive-wal –create-slot olmero
barman switch-wal olmero

If your primary changed
Timeline will change, no confusion in wal segments
Make a new basebackup

Wrap up - Picture at OLMeRO

repmgr as wrapper arround built-in features
Very flexible, very slim
BYOS: You have to bring your own failover logic

This is very hard
Plays well with barman

Thank You

Questions and Discussion

