
Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

NoSQL? No, SQL!

10 SQL Tricks

That you didn’t think
were possible

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

NoSQL? No, SQL!

10 SQL Tricks

To Convince You that
SQL is Awesome

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Java Devs working with SQL for the first time

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Me – @lukaseder

SQL is a device whose
mystery is only exceeded by
its power!

- Founder and CEO at Data Geekery

- Oracle Java Champion

- Oracle ACE

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Why do I talk about SQL?

SQL is the only ever successful,
mainstream, and general-
purpose 4GL (Fourth-
Generation Programming
Language)

And it is awesome!

https://en.wikipedia.org/wiki/Fourth-generation_programming_language

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Why doesn’t anyone else talk about SQL?

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Why doesn’t anyone else talk about SQL?

¯_(シ)_/¯

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

What is SQL?

What is
SQL?

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

What is SQL?

SQL is the original
microservice

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

What is SQL?

SQL is the original
microservice

Just install a single stored
procedure in an Oracle XE
instance, deploy, done.

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

What is SQL?

SQL is the original
blockchain

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

What is SQL?

SQL is the original
blockchain

Idea credit: @rotnroll666

WITH chain(n, block) AS (
SELECT 1, standard_hash('Whee', 'MD5')
FROM dual
UNION ALL
SELECT n + 1, standard_hash(block, 'MD5')
FROM chain WHERE n < 100

)
SELECT block FROM chain

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

What is SQL?

SQL is the original
ML language

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

What is SQL?

SQL is the original
ML language

We’ve had linear regression
functions since decades!

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Who thinks this is SQL?

SELECT *
FROM person
WHERE id = 42

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Who thinks this is SQL?

@Entity
@Table(name = "EVENTS")
public class Event {
private Long id;
private String title;
private Date date;

@Id
@GeneratedValue(generator = "increment")
@GenericGenerator(name = "increment", strategy = "increment")
public Long getId() { /* … */ }

@Temporal(TemporalType.TIMESTAMP)
@Column(name = "EVENT_DATE")
public Date getDate() { /* … */ }

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Or this…?

@OneToMany(mappedBy = "destCustomerId")
@ManyToMany
@Fetch(FetchMode.SUBSELECT)
@JoinTable(

name = "customer_dealer_map",
joinColumns = {

@JoinColumn(name = "customer_id", referencedColumnName = "id")
},
inverseJoinColumns = {

@JoinColumn(name = "dealer_id", referencedColumnName = "id")
}

)
private Collection dealers;

Found at http://stackoverflow.com/q/17491912/521799

http://stackoverflow.com/q/17491912/521799

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Think again!

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

This is also SQL

-- Query from http://explainextended.com/2013/12/31/happy-new-year-5/
WITH RECURSIVE q(r, i, rx, ix, g) AS (
SELECT r::DOUBLE PRECISION * 0.02, i::DOUBLE PRECISION * 0.02,

.0::DOUBLE PRECISION , .0::DOUBLE PRECISION, 0
FROM generate_series(-60, 20) r, generate_series(-50, 50) i
UNION ALL
SELECT r, i, CASE WHEN abs(rx * rx + ix * ix) <= 2 THEN rx * rx - ix * ix END + r,

CASE WHEN abs(rx * rx + ix * ix) <= 2 THEN 2 * rx * ix END + i, g + 1
FROM q
WHERE rx IS NOT NULL AND g < 99

)
SELECT array_to_string(array_agg(s ORDER BY r), '')
FROM (
SELECT i, r, substring(' .:-=+*#%@', max(g) / 10 + 1, 1) s
FROM q
GROUP BY i, r

) q
GROUP BY i
ORDER BY i

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

This is also SQL: Generating the Mandelbrot Set

-- Query from http://explainextended.com/2013/12/31/happy-new-year-5/
WITH RECURSIVE q(r, i, rx, ix, g) AS (
SELECT r::DOUBLE PRECISION * 0.02, i::DOUBLE PRECISION * 0.02,

.0::DOUBLE PRECISION , .0::DOUBLE PRECISION, 0
FROM generate_series(-60, 20) r, generate_series(-50, 50) i
UNION ALL
SELECT r, i, CASE WHEN abs(rx * rx + ix * ix) <= 2 THEN rx * rx - ix * ix END + r,

CASE WHEN abs(rx * rx + ix * ix) <= 2 THEN 2 * rx * ix END + i, g + 1
FROM q
WHERE rx IS NOT NULL AND g < 99

)
SELECT array_to_string(array_agg(s ORDER BY r), '')
FROM (
SELECT i, r, substring(' .:-=+*#%@', max(g) / 10 + 1, 1) s
FROM q
GROUP BY i, r

) q
GROUP BY i
ORDER BY i

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

SQL:1999 is turing complete

SQL:1999 is
turing complete

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

SQL:1999 is turing complete

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Seriously, what does that mean?

Any program
can be written
in SQL!
(although, no one’s that crazy)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

The strength of a 4GL language

You tell the
machine WHAT,
not HOW

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Which do you feel is more awesome? This?

Siri, what is the
meaning of life?

Image credit: https://www.flickr.com/photos/procsilas/12821454664 By Procsilas Moscas. License CC-BY 2.0

https://www.flickr.com/photos/procsilas/12821454664

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Which do you feel is more awesome? Or this?

Image credit: https://www.flickr.com/photos/ajmexico/3281139507 By ajmexico. License CC-BY 2.0

https://www.flickr.com/photos/ajmexico/3281139507

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

That’s why the company is called “Oracle”

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

What’s the problem with SQL?

What’s the
problem with
SQL?

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

What’s the problem with SQL? – SQL code

WITH RECURSIVE t(d) AS (

SELECT DATE '2005-07-01'

UNION ALL

SELECT (d + INTERVAL '1 days')::DATE

FROM t

WHERE d < DATE '2005-07-31'

)

SELECT *

FROM t

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

What’s the problem with SQL? – COBOL code

DATA DIVISION.
FILE SECTION.
FD Sales-File.
01 Sales-Rec.

88 End-Of-Sales-File VALUE HIGH-VALUES.
02 SF-Cust-Id PIC X(5).
02 SF-Cust-Name PIC X(20).
02 SF-Oil-Id.

03 FILLER PIC X.
88 Essential-Oil VALUE "1".

03 SF-Oil-Name PIC 99.
02 SF-Unit-Size PIC 99.
02 SF-Units-Sold PIC 999.

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

What’s the problem with SQL? – ALL CAPS!!!!

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Why people don’t like SQL

The syntax
is awkward.

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Why people don’t like SQL

Declarative
thinking is
hard.

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Why people should like SQL

Reporting is
«very easy»
with SQL.

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Why people should like SQL

Bulk data
processing is
«very easy»
with SQL.

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Why people should like SQL

Ad-hoc
analytics is
«very easy»
with SQL.

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Why people should like SQL

By «very easy» I
mean hard.
But you don’t
have a choice.

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

SQL is the worst
form of database
querying, except
for all the other
forms.

Winston Churchill on SQL

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Remember this from this talk: The SQL muscle

Image credit: https://www.flickr.com/photos/flamephoenix1991/8376271918 By _DJ_. License CC-BY SA 2.0

https://www.flickr.com/photos/flamephoenix1991/8376271918

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Remember this from this talk: The SQL muscle

Image credit: https://www.flickr.com/photos/flamephoenix1991/8376271918 By _DJ_. License CC-BY SA 2.0

This is the SQL muscle.

It needs constant training
and practice

https://www.flickr.com/photos/flamephoenix1991/8376271918

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Remember this from this talk: The SQL muscle

Image credit: https://www.flickr.com/photos/mikecogh/6684205707 By Michael Coghlan. License CC-BY SA 2.0

It is the same for the Java muscle

https://www.flickr.com/photos/mikecogh/6684205707

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Remember this from this talk: The SQL muscle

Image credit: https://www.flickr.com/photos/mikecogh/6684205707 By Michael Coghlan. License CC-BY SA 2.0

A.K.A. the
FactoryBodyBuilderProxyBeanDelegateComponent

https://www.flickr.com/photos/mikecogh/6684205707

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

What you came here for

Enough bla bla

What you came
here for...

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

10 SQL tricks to convince you SQL is awesome

1. Everything is a table

2. Data generation with recursive SQL

3. Running total calculations

4. Finding the length of a series

5. Finding the largest series with no gaps

6. The subset sum problem with SQL

7. Capping a running total

8. Time series pattern recognition

9. Pivoting and unpivoting

10.Abusing XML and JSON (don’t do this at home)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

10 SQL tricks to convince you SQL is awesome

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Are you really ready?

This presentation
has roughly 5713
slides of SQL
awesomeness!

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Speaking of slides: Let’s thank our patron saint
Ada Lovelace

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Speaking of slides: Let’s thank our patron saint
Ada Lovelace

Without her, instead of writing
SQL, we would all be writing
Powerpoint or something

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Everything is a table

SELECT *

FROM person

Most of you know this:

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Everything is a table

SELECT *

FROM person

Most of you know this:

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Everything is a table

SELECT *

FROM person

Most of you know this:

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Everything is a table

SELECT *

FROM (

SELECT *

FROM person

) AS t -- "derived table"

Most of you also know this:

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Everything is a table

SELECT *

FROM (

-- "values constructor"

VALUES (1, 'a'), (2, 'b')

) t(a, b) -- "derived column list"

But did you know this?

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Everything is a table

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Everything is a table

SELECT *

FROM (

SELECT 1 AS a, 'a' AS b FROM dual

UNION ALL

SELECT 2, 'b' FROM dual

) t

But did you know this?

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Everything is a table

SELECT *

FROM substring('abcde', 2, 3)

Or this?

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Everything is a table – Compare it to Java 8

TABLE : Stream<Tuple<..>>
SELECT : map()
DISTINCT : distinct()
JOIN : flatMap()
WHERE / HAVING : filter()
GROUP BY : collect()
ORDER BY : sorted()
UNION ALL : concat()

See:
http://blog.jooq.org/2015/08/13/common-sql-clauses-and-their-equivalents-in-java-8-streams/

http://blog.jooq.org/2015/08/13/common-sql-clauses-and-their-equivalents-in-java-8-streams/

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Everything is a table – Compare it to Java 8

Better Streams:

https://github.com/jOOQ/jOOL

https://github.com/jOOQ/jOOL

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

1. Everything is a table – Compare it to Java 8

Seq.seq(persons)
.collect(

count(),
max(Person::getAge),
min(Person::getHeight),
avg(Person::getWeight)

);
// (3, Optional[35],
// Optional[1.69], Optional[70.0])

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

2. Data Generation with Recursive SQL

Common Table Expressions

The only way to declare
variables in SQL

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

2. Data Generation with Recursive SQL

-- Table variables
WITH

t1(v1, v2) AS (SELECT 1, 2),
t2(w1, w2) AS (

SELECT v1 * 2, v2 * 2
FROM t1

)
SELECT *
FROM t1, t2

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

2. Data Generation with Recursive SQL

WITH RECURSIVE t(v) AS (
SELECT 1 -- Seed Row
UNION ALL
SELECT v + 1 -- Recursion
FROM t

)
SELECT v
FROM t
LIMIT 5

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

2. Data Generation with Recursive SQL

WITH RECURSIVE t(v) AS (
SELECT 1 -- Seed Row
UNION ALL
SELECT v + 1 -- Recursion
FROM t

)
SELECT v
FROM t
LIMIT 5

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

2. Data Generation with Recursive SQL

WITH RECURSIVE t(v) AS (
SELECT 1 -- Seed Row
UNION ALL
SELECT v + 1 -- Recursion
FROM t

)
SELECT v
FROM t
LIMIT 5

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

2. Data Generation with Recursive SQL

WITH RECURSIVE t(v) AS (
SELECT 1 -- Seed Row
UNION ALL
SELECT v + 1 -- Recursion
FROM t

)
SELECT v
FROM t
LIMIT 5

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

2. Data Generation with Recursive SQL

WITH RECURSIVE t(v) AS (
SELECT 1 -- Seed Row
UNION ALL
SELECT v + 1 -- Recursion
FROM t

)
SELECT v
FROM t
LIMIT 5

Credits for this lame Powerpoint joke:

Hadi Hariri from JetBrains

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

2. Data Generation with Recursive SQL

WITH RECURSIVE t(v) AS (
SELECT 1 -- Seed Row
UNION ALL
SELECT v + 1 -- Recursion
FROM t

)
SELECT v
FROM t
LIMIT 5

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

2. Data Generation with Recursive SQL

WITH RECURSIVE t(v) AS (
SELECT 1 -- Seed Row
UNION ALL
SELECT v + 1 -- Recursion
FROM t

)
SELECT v
FROM t
LIMIT 5

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

2. Data Generation with Recursive SQL

SELECT level AS v
FROM dual
CONNECT BY level <= 5

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Remember?

-- Query from http://explainextended.com/2013/12/31/happy-new-year-5/
WITH RECURSIVE q(r, i, rx, ix, g) AS (
SELECT r::DOUBLE PRECISION * 0.02, i::DOUBLE PRECISION * 0.02,

.0::DOUBLE PRECISION , .0::DOUBLE PRECISION, 0
FROM generate_series(-60, 20) r, generate_series(-50, 50) i
UNION ALL
SELECT r, i, CASE WHEN abs(rx * rx + ix * ix) <= 2 THEN rx * rx - ix * ix END + r,

CASE WHEN abs(rx * rx + ix * ix) <= 2 THEN 2 * rx * ix END + i, g + 1
FROM q
WHERE rx IS NOT NULL AND g < 99

)
SELECT array_to_string(array_agg(s ORDER BY r), '')
FROM (
SELECT i, r, substring(' .:-=+*#%@', max(g) / 10 + 1, 1) s
FROM q
GROUP BY i, r

) q
GROUP BY i
ORDER BY i

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

2. Data Generation with Recursive SQL

Applications:

1. Iterate from 1 to 10

2. Generate all dates in July 2016

3. Generating graphs (stay tuned!)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

3. Running total calculations

What is a running total?

Ask your project manager to give
you a crash course about the
awesome Microsoft Excel!

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

3. Running total calculations

What is a running total?

Ask your project manager to give
you a crash course about the
awesome Microsoft Excel!

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

3. Running total calculations

But first, a little theory about
window functions

There was SQL before window
functions and there was SQL after
window functions.

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

3. Running total calculations

-- Aggregations / rankings on a subset of
-- rows relative to the current row being
-- transformed by SELECT
function(...) OVER (
PARTITION BY ...
ORDER BY ...
ROWS BETWEEN ... AND ...

)

What are window functions?

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

3. Running total calculations

-- Aggregations / rankings on a subset of
-- rows relative to the current row being
-- transformed by SELECT
function(...) OVER (
PARTITION BY length
ORDER BY ...
ROWS BETWEEN ... AND ...

)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

3. Running total calculations

-- Aggregations / rankings on a subset of
-- rows relative to the current row being
-- transformed by SELECT
function(...) OVER (
PARTITION BY length
ORDER BY ...
ROWS BETWEEN ... AND ...

)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

3. Running total calculations

-- Aggregations / rankings on a subset of
-- rows relative to the current row being
-- transformed by SELECT
function(...) OVER (
PARTITION BY ...
ORDER BY title
ROWS BETWEEN ... AND ...

)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

3. Running total calculations

-- Aggregations / rankings on a subset of
-- rows relative to the current row being
-- transformed by SELECT
function(...) OVER (
PARTITION BY ...
ORDER BY title
ROWS BETWEEN ... AND ...

)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

3. Running total calculations

-- Aggregations / rankings on a subset of
-- rows relative to the current row being
-- transformed by SELECT
row_number() OVER (
PARTITION BY ...
ORDER BY title
ROWS BETWEEN ... AND ...

)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Let this settle a bit

Image credit: https://www.flickr.com/photos/epler/482921404 By Jim Epler. License CC-BY 2.0

https://www.flickr.com/photos/epler/482921404

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Let this settle a bit

Image credit: https://www.flickr.com/photos/epler/482921404 By Jim Epler. License CC-BY 2.0

Window functions are
aggregations / rankings on a
subset of rows relative to the
current row being transformed by
SELECT

https://www.flickr.com/photos/epler/482921404

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

3. Running total calculations

This is the data in the database table

ID	VALUE_DATE	AMOUNT
9997	2014-03-18	99.17
9981	2014-03-16	71.44
9979	2014-03-16	-94.60
9977	2014-03-16	-6.96
9971	2014-03-15	-65.95

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

3. Running total calculations

This is what we want to calculate

ID	VALUE_DATE	AMOUNT	BALANCE
9997	2014-03-18	99.17	19985.81
9981	2014-03-16	71.44	19886.64
9979	2014-03-16	-94.60	19815.20
9977	2014-03-16	-6.96	19909.80
9971	2014-03-15	-65.95	19916.76

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

3. Running total calculations

This is how we calculate it

ID	VALUE_DATE	AMOUNT	BALANCE
9997	2014-03-18 -(99.17)	+19985.81	
9981	2014-03-16 -(71.44)	19886.64	
9979	2014-03-16 -(-94.60)	19815.20	
9977	2014-03-16	-6.96	=19909.80
9971	2014-03-15	-65.95	19916.76

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

SUM(t.amount) OVER (
PARTITION BY t.account_id
ORDER BY t.value_date DESC,

t.id DESC
ROWS BETWEEN UNBOUNDED PRECEDING

AND 1 PRECEDING
)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

SUM(t.amount) OVER (
PARTITION BY t.account_id
ORDER BY t.value_date DESC,

t.id DESC
ROWS BETWEEN UNBOUNDED PRECEDING

AND 1 PRECEDING
)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

SUM(t.amount) OVER (
PARTITION BY t.account_id
ORDER BY t.value_date DESC,

t.id DESC
ROWS BETWEEN UNBOUNDED PRECEDING

AND 1 PRECEDING
)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

SUM(t.amount) OVER (
PARTITION BY t.account_id
ORDER BY t.value_date DESC,

t.id DESC
ROWS BETWEEN UNBOUNDED PRECEDING

AND 1 PRECEDING
)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Now we have the tool set.

Remember these two advanced
SQL features:

1. (Recursive) common table
expressions

2. Window functions

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Now we have the tool set. Are you ready?

bleep

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Don’t worry if this is how you feel:

Experience comes with practice!

Don’t worry.

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Finding the largest series with no gaps

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Finding the largest series with no gaps

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Finding the largest series with no gaps

LOGIN_TIME
2014-03-18 05:37:13
2014-03-16 08:31:47
2014-03-16 06:11:17
2014-03-16 05:59:33
2014-03-15 11:17:28
2014-03-15 10:00:11
2014-03-15 07:45:27
2014-03-15 07:42:19
2014-03-14 09:38:12

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Finding the largest series with no gaps

LOGIN_DATE
2014-03-18
2014-03-16
2014-03-15
2014-03-14

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Easy...

4. Finding the largest series with no gaps

SELECT DISTINCT
cast(login_time AS DATE) AS login_date

FROM logins
WHERE user_id = :user_id

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Finding the largest series with no gaps

LOGIN_DATE	RN
2014-03-18	4
2014-03-16	3
2014-03-15	2
2014-03-14	1

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Still easy...

4. Finding the largest series with no gaps

SELECT
login_date,
row_number() OVER (ORDER BY login_date)

FROM login_dates

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Now, what happens if we subtract...?

4. Finding the largest series with no gaps

SELECT
login_date -
row_number() OVER (ORDER BY login_date)

FROM login_dates

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Finding the largest series with no gaps

LOGIN_DATE	RN	GRP
2014-03-18	4	2014-03-14
2014-03-16	3	2014-03-13
2014-03-15	2	2014-03-13
2014-03-14	1	2014-03-13

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Finding the largest series with no gaps

LOGIN_DATE	RN	GRP
2014-03-18	4	2014-03-14
2014-03-16	3	2014-03-13
2014-03-15	2	2014-03-13
2014-03-14	1	2014-03-13

Gap here

Gap here

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Finding the largest series with no gaps

Such consecutive

Much row number

So gap wow

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Easy explanation:

1. ROW_NUMBER() never has gaps

2. Our data, however, does

4. Finding the largest series with no gaps

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

So, just group by this difference!

4. Finding the largest series with no gaps

SELECT
min(login_date), max(login_date),
max(login_date) -
min(login_date) + 1 AS length

FROM login_date_groups
GROUP BY grp
ORDER BY length DESC

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Finding the largest series with no gaps

MIN	MAX	LENGTH
2014-03-14	2014-03-16	3
2014-03-18	2014-03-18	1

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

4. Finding the largest series with no gaps

WITH
login_dates AS (
SELECT DISTINCT cast(login_time AS DATE) login_date
FROM logins WHERE user_id = :user_id

),
login_date_groups AS (
SELECT
login_date,
login_date - row_number() OVER (ORDER BY login_date) AS grp

FROM login_dates
)

SELECT
min(login_date), max(login_date),
max(login_date) - min(login_date) + 1 AS length

FROM login_date_groups
GROUP BY grp
ORDER BY length DESC

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

“Tabibitosan method”
(Japanese: the traveler)

by Aketi Jyuuzou

4. Finding the largest series with no gaps

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

OK?

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Finding the length of a series

ID	VALUE_DATE	AMOUNT
9997	2014-03-18	99.17
9981	2014-03-16	71.44
9979	2014-03-16	-94.60
9977	2014-03-16	-6.96
9971	2014-03-15	-65.95
9964	2014-03-15	15.13
9962	2014-03-15	17.47
9960	2014-03-15	-3.55
9959	2014-03-14	32.00

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Finding the length of a series

ID	VALUE_DATE	AMOUNT	LENGTH
9997	2014-03-18	99.17	2
9981	2014-03-16	71.44	2
9979	2014-03-16	-94.60	3
9977	2014-03-16	-6.96	3
9971	2014-03-15	-65.95	3
9964	2014-03-15	15.13	2
9962	2014-03-15	17.47	2
9960	2014-03-15	-3.55	1
9959	2014-03-14	32.00	1

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Finding the length of a series

ID	VALUE_DATE	AMOUNT	LENGTH
9997	2014-03-18	+99.17	2
9981	2014-03-16	+71.44	2
9979	2014-03-16	-94.60	3
9977	2014-03-16	-6.96	3
9971	2014-03-15	-65.95	3
9964	2014-03-15	15.13	2
9962	2014-03-15	17.47	2
9960	2014-03-15	-3.55	1
9959	2014-03-14	32.00	1

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Finding the length of a series

ID	VALUE_DATE	AMOUNT	LENGTH
9997	2014-03-18	99.17	2
9981	2014-03-16	71.44	2
9979	2014-03-16	-94.60	3
9977	2014-03-16	-6.96	3
9971	2014-03-15	-65.95	3
9964	2014-03-15	15.13	2
9962	2014-03-15	17.47	2
9960	2014-03-15	-3.55	1
9959	2014-03-14	32.00	1

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Finding the length of a series

ID	VALUE_DATE	AMOUNT	LENGTH
9997	2014-03-18	99.17	2
9981	2014-03-16	71.44	2
9979	2014-03-16	-94.60	3
9977	2014-03-16	-6.96	3
9971	2014-03-15	-65.95	3
9964	2014-03-15	+15.13	2
9962	2014-03-15	+17.47	2
9960	2014-03-15	-3.55	1
9959	2014-03-14	32.00	1

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Finding the length of a series

ID	VALUE_DATE	AMOUNT	LENGTH
9997	2014-03-18	99.17	2
9981	2014-03-16	71.44	2
9979	2014-03-16	-94.60	3
9977	2014-03-16	-6.96	3
9971	2014-03-15	-65.95	3
9964	2014-03-15	15.13	2
9962	2014-03-15	17.47	2
9960	2014-03-15	-3.55	1
9959	2014-03-14	32.00	1

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Finding the length of a series

ID	VALUE_DATE	AMOUNT	LENGTH
9997	2014-03-18	99.17	2
9981	2014-03-16	71.44	2
9979	2014-03-16	-94.60	3
9977	2014-03-16	-6.96	3
9971	2014-03-15	-65.95	3
9964	2014-03-15	15.13	2
9962	2014-03-15	17.47	2
9960	2014-03-15	-3.55	1
9959	2014-03-14	+32.00	1

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Finding the length of a series

ID	AMOUNT	SIGN	RN
9997	99.17	1	1
9981	71.44	1	2
9979	-94.60	-1	3
9977	-6.96	-1	4
9971	-65.95	-1	5
9964	15.13	1	6
9962	17.47	1	7
9960	-3.55	-1	8
9959	32.00	1	9

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Finding the length of a series

That’s easy

SELECT
id, amount,
sign(amount) AS sign,
row_number()
OVER (ORDER BY id DESC) AS rn

FROM trx

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Finding the length of a series

ID	AMOUNT	SIGN	RN	LO	HI
9997	99.17	1	1	1	
9981	71.44	1	2		2
9979	-94.60	-1	3	3	
9977	-6.96	-1	4		
9971	-65.95	-1	5		5
9964	15.13	1	6	6	
9962	17.47	1	7		7
9960	-3.55	-1	8	8	8
9959	32.00	1	9	9	9

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Finding the length of a series

ID	AMOUNT	SIGN	RN	LO	HI
9997	99.17	1	1	1	
9981	71.44	1	2		2
9979	-94.60	-1	3	3	
9977	-6.96	-1	4		
9971	-65.95	-1	5		5
9964	15.13	1	6	6	
9962	17.47	1	7		7
9960	-3.55	-1	8	8	8
9959	32.00	1	9	9	9

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Finding the length of a series

ID	AMOUNT	SIGN	RN	LO	HI
9997	99.17	1	1	1	
9981	71.44	1	2		2
9979	-94.60	-1	3	3	
9977	-6.96	-1	4		
9971	-65.95	-1	5		5
9964	15.13	1	6	6	
9962	17.47	1	7		7
9960	-3.55	-1	8	8	8
9959	32.00	1	9	9	9

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Finding the length of a series

ID	AMOUNT	SIGN	RN	LO	HI
9997	99.17	1	1	1	
9981	71.44	1	2		2
9979	-94.60	-1	3	3	
9977	-6.96	-1	4		
9971	-65.95	-1	5		5
9964	15.13	1	6	6	
9962	17.47	1	7		7
9960	-3.55	-1	8	8	8
9959	32.00	1	9	9	9

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Finding the length of a series

ID	AMOUNT	SIGN	RN	LO	HI
9997	99.17	1	1	1	
9981	71.44	1	2		2
9979	-94.60	-1	3	3	
9977	-6.96	-1	4		
9971	-65.95	-1	5		5
9964	15.13	1	6	6	
9962	17.47	1	7		7
9960	-3.55	-1	8	8	8
9959	32.00	1	9	9	9

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Finding the length of a series

ID	AMOUNT	SIGN	RN	LO	HI
9997	99.17	1	1	1	
9981	71.44	1	2		2
9979	-94.60	-1	3	3	
9977	-6.96	-1	4		
9971	-65.95	-1	5		5
9964	15.13	1	6	6	
9962	17.47	1	7		7
9960	-3.55	-1	8	8	8
9959	32.00	1	9	9	9

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Finding the length of a series

LEAD() and LAG()

SELECT
lag(v) OVER (ORDER BY v),
v,
lead(v) OVER (ORDER BY v)

FROM (
VALUES (1), (2), (3), (4)

) t(v)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Finding the length of a series

SELECT
trx.*,
CASE WHEN lag(sign)

OVER (ORDER BY id DESC) != sign
THEN rn END AS lo,

CASE WHEN lead(sign)
OVER (ORDER BY id DESC) != sign
THEN rn END AS hi,

FROM trx

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Finding the length of a series

SELECT -- With NULL handling...
trx.*,
CASE WHEN coalesce(lag(sign)

OVER (ORDER BY id DESC), 0)!=sign
THEN rn END AS lo,

CASE WHEN coalesce(lead(sign)
OVER (ORDER BY id DESC), 0)!=sign
THEN rn END AS hi,

FROM trx

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Finding the length of a series

ID	AMOUNT	SIGN	RN	LO	HI
9997	99.17	1	1	1	2
9981	71.44	1	2	1	2
9979	-94.60	-1	3	3	5
9977	-6.96	-1	4	3	5
9971	-65.95	-1	5	3	5
9964	15.13	1	6	6	7
9962	17.47	1	7	6	7
9960	-3.55	-1	8	8	8
9959	32.00	1	9	9	9

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Finding the length of a series

ID	AMOUNT	SIGN	RN	LO	HI
9997	99.17	1	1	1	2
9981	71.44	1	2	1	2
9979	-94.60	-1	3	3	5
9977	-6.96	-1	4	3	5
9971	-65.95	-1	5	3	5
9964	15.13	1	6	6	7
9962	17.47	1	7	6	7
9960	-3.55	-1	8	8	8
9959	32.00	1	9	9	9

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Finding the length of a series

ID	AMOUNT	SIGN	RN	LO	HI
9997	99.17	1	1	1	2
9981	71.44	1	2	1	2
9979	-94.60	-1	3	3	5
9977	-6.96	-1	4	3	5
9971	-65.95	-1	5	3	5
9964	15.13	1	6	6	7
9962	17.47	1	7	6	7
9960	-3.55	-1	8	8	8
9959	32.00	1	9	9	9

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Finding the length of a series

ID	AMOUNT	SIGN	RN	LO	HI
9997	99.17	1	1	1	2
9981	71.44	1	2	1	2
9979	-94.60	-1	3	3	5
9977	-6.96	-1	4	3	5
9971	-65.95	-1	5	3	5
9964	15.13	1	6	6	7
9962	17.47	1	7	6	7
9960	-3.55	-1	8	8	8
9959	32.00	1	9	9	9

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Finding the length of a series

ID	AMOUNT	SIGN	RN	LO	HI
9997	99.17	1	1	1	2
9981	71.44	1	2	1	2
9979	-94.60	-1	3	3	5
9977	-6.96	-1	4	3	5
9971	-65.95	-1	5	3	5
9964	15.13	1	6	6	7
9962	17.47	1	7	6	7
9960	-3.55	-1	8	8	8
9959	32.00	1	9	9	9

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Finding the length of a series

ID	AMOUNT	SIGN	RN	LO	HI
9997	99.17	1	1	1	2
9981	71.44	1	2	1	2
9979	-94.60	-1	3	3	5
9977	-6.96	-1	4	3	5
9971	-65.95	-1	5	3	5
9964	15.13	1	6	6	7
9962	17.47	1	7	6	7
9960	-3.55	-1	8	8	8
9959	32.00	1	9	9	9

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Finding the length of a series

SELECT
trx.*,
last_value (lo) IGNORE NULLS OVER (

ORDER BY id DESC
ROWS BETWEEN UNBOUNDED PRECEDING
AND CURRENT ROW) AS lo,

first_value(hi) IGNORE NULLS OVER (
ORDER BY id DESC
ROWS BETWEEN CURRENT ROW
AND UNBOUNDED FOLLOWING) AS hi

FROM trx

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Finding the length of a series

SELECT -- With NULL handling...
trx.*,
coalesce(last_value (lo) IGNORE NULLS OVER (

ORDER BY id DESC
ROWS BETWEEN UNBOUNDED PRECEDING
AND CURRENT ROW), rn) AS lo,

coalesce(first_value(hi) IGNORE NULLS OVER (
ORDER BY id DESC
ROWS BETWEEN CURRENT ROW
AND UNBOUNDED FOLLOWING), rn) AS hi

FROM trx

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Finding the length of a series

ID	AMOUNT	SIGN	RN	LO	HI
9997	99.17	1	1	1	
9981	71.44	1	2		2
9979	-94.60	-1	3	3	
9977	-6.96	-1	4		
9971	-65.95	-1	5		5
9964	15.13	1	6	6	
9962	17.47	1	7		7
9960	-3.55	-1	8	8	8
9959	32.00	1	9	9	9

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Finding the length of a series

ID	AMOUNT	SIGN	RN	LO	HI
9997	99.17	1	1	1	
9981	71.44	1	2		2
9979	-94.60	-1	3	3	5
9977	-6.96	-1	4	3	5
9971	-65.95	-1	5	3	5
9964	15.13	1	6	6	
9962	17.47	1	7		7
9960	-3.55	-1	8	8	8
9959	32.00	1	9	9	9

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Finding the length of a series

SELECT
trx.*,
1 + hi - lo AS length

FROM trx

Trivial last step

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Finding the length of a series

ID	AMOUNT	SIGN	RN	LO	HI	LENGTH
9997	99.17	1	1	1	2	2
9981	71.44	1	2	1	2	2
9979	-94.60	-1	3	3	5	3
9977	-6.96	-1	4	3	5	3
9971	-65.95	-1	5	3	5	3
9964	15.13	1	6	6	7	2
9962	17.47	1	7	6	7	2
9960	-3.55	-1	8	8	8	1
9959	32.00	1	9	9	9	1

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

5. Finding the length of a series

WITH
trx1(id, amount, sign, rn) AS (

SELECT id, amount, sign(amount), row_number() OVER (ORDER BY id DESC)
FROM trx

),
trx2(id, amount, sign, rn, lo, hi) AS (

SELECT trx1.*,
CASE WHEN coalesce(lag(sign) OVER (ORDER BY id DESC), 0) != sign

THEN rn END,
CASE WHEN coalesce(lead(sign) OVER (ORDER BY id DESC), 0) != sign

THEN rn END
FROM trx1

)
SELECT

trx2.*, 1
- last_value (lo) IGNORE NULLS OVER (ORDER BY id DESC

ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)
+ first_value(hi) IGNORE NULLS OVER (ORDER BY id DESC

ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING)
FROM trx2

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Still OK?

Image credit: https://www.flickr.com/photos/ekilby/8045769337/ By Eric Kilby. License CC-BY SA 2.0

https://www.flickr.com/photos/ekilby/8045769337/

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

6. The subset sum problem with SQL

What is the subset sum problem?

Explanation:
https://xkcd.com/287
(cannot include comic for © reasons. Please, don’t use CC-BY SA NC without an actual commercial offering!)

Boring explanation:
https://en.wikipedia.org/wiki/Subset_sum_problem

https://xkcd.com/287
https://en.wikipedia.org/wiki/Subset_sum_problem

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

6. The subset sum problem with SQL

For each of these...

ID	TOTAL
1	25150
2	19800
3	27511

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

6. The subset sum problem with SQL

... find the closest
sum from these...

ID	ITEM
1	7120
2	8150
3	8255
4	9051
5	1220
6	12515
7	13555
8	5221
9	812
10	6562

For each of these...

ID	TOTAL
1	25150
2	19800
3	27511

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Desired result:

6. The subset sum problem with SQL

TOTAL	BEST	CALCULATION
25150	25133	7120 + 8150 + 9051 + 812
19800	19768	1220 + 12515 + 5221 + 812
27511	27488	8150 + 8255 + 9051 + 1220 + 812

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

6. The subset sum problem with SQL

Let’s implement the naïvest
possible, exponential algorithm

O(2NN)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

6. The subset sum problem with SQL

There are 2N subsets and we need
to sum at most N elements.

O(2NN)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

6. The subset sum problem with SQL

-- All the possible 2N sums
WITH sums(sum, max_id, calc) AS (...)

-- Find the best sum per “TOTAL”
SELECT
totals.total,
something_something(total - sum) AS best,
something_something(total - sum) AS calc

FROM draw_the_rest_of_the_*bleep*_owl

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Maybe, if I just hide, the query will go away…?

Image credit: https://www.flickr.com/photos/12023825@N04/2898021822 By Peter. License CC-BY SA 2.0

https://www.flickr.com/photos/12023825@N04/2898021822

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

6. The subset sum problem with SQL

What are the possible sums?
All the single-item sums

ID	ITEM
1	7120
2	8150
3	8255
4	9051
5	1220
6	12515
7	13555
8	5221
9	812
10	6562

“Stack”

SUMS(1:10)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

6. The subset sum problem with SQL

What are the possible sums?
All the single-item sums

ID	ITEM
1	7120
2	8150
3	8255
4	9051
5	1220
6	12515
7	13555
8	5221
9	812
10	6562

“Stack”

{ 7120 } x SUMS(2:10)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

6. The subset sum problem with SQL

What are the possible sums?
All the single-item sums

ID	ITEM
1	7120
2	8150
3	8255
4	9051
5	1220
6	12515
7	13555
8	5221
9	812
10	6562

“Stack”

{ 7120 + 8150 } x SUMS(3:10)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

6. The subset sum problem with SQL

What are the possible sums?
All the single-item sums

ID	ITEM
1	7120
2	8150
3	8255
4	9051
5	1220
6	12515
7	13555
8	5221
9	812
10	6562

“Stack”

{ 7120 + 1220 } x SUMS(6:10)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

6. The subset sum problem with SQL

What are the possible sums?
All the single-item sums

ID	ITEM	IN_THE_SET
1	7120	1
2	8150	0
3	8255	0
4	9051	0
5	1220	1
6	12515	_
7	13555	_
8	5221	_
9	812	_
10	6562	_

“Stack”

{ 7120 + 1220 } x SUMS(6:10)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

-- All the possible 2N sums
WITH sums(sum, id, calc) AS (

-- First iteration
SELECT item, id, to_char(item)
FROM items

)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

-- All the possible 2N sums
WITH sums(sum, id, calc) AS (

-- First iteration
SELECT item, id, to_char(item)
FROM items

-- Recursion
UNION ALL
SELECT

item + sum,
items.id,
calc || ' + ' || item

FROM sums JOIN items ON sums.id < items.id
)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

-- All the possible 2N sums
WITH sums(sum, id, calc) AS (

-- First iteration
SELECT item, id, to_char(item)
FROM items

-- Recursion
UNION ALL
SELECT

item + sum,
items.id,
calc || ' + ' || item

FROM sums JOIN items ON sums.id < items.id
)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

-- All the possible 2N sums
WITH sums(sum, id, calc) AS (

-- First iteration
SELECT item, id, to_char(item)
FROM items

-- Recursion
UNION ALL
SELECT

item + sum,
items.id,
calc || ' + ' || item

FROM sums JOIN items ON sums.id < items.id
)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

-- All the possible 2N sums
WITH sums(sum, id, calc) AS (

-- First iteration
SELECT item, id, to_char(item)
FROM items

-- Recursion
UNION ALL
SELECT

item + sum,
items.id,
calc || ' + ' || item

FROM sums JOIN items ON sums.id < items.id
)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

-- All the possible 2N sums
WITH sums(sum, id, calc) AS (

-- First iteration
SELECT item, id, to_char(item)
FROM items

-- Recursion
UNION ALL
SELECT

item + sum,
items.id,
calc || ' + ' || item

FROM sums JOIN items ON sums.id < items.id
)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

6. The subset sum problem with SQL

... find the closest
sum from these...

ID	ITEM
1	7120
2	8150
3	8255
4	9051
5	1220
6	12515
7	13555
8	5221
9	812
10	6562

For each of these...

ID	TOTAL
1	25150
2	19800
3	27511

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

6. The subset sum problem with SQL

-- All the possible 2N sums
WITH sums(sum, max_id, calc) AS (...)

-- Find the best sum per “TOTAL”
SELECT
totals.id,
totals.total,
min(abs(total - sum)) AS best_diff

FROM totals
CROSS JOIN sums
GROUP BY totals.id, totals.total

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

6. The subset sum problem with SQL

-- All the possible 2N sums
WITH sums(sum, max_id, calc) AS (...)

-- Find the best sum per “TOTAL”
SELECT
totals.id,
totals.total,
min(abs(total - sum)) AS best_diff

FROM totals
CROSS JOIN sums
GROUP BY totals.id, totals.total

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

R × S
Ranks = {A, K, Q, J, 10, 9, 8, 7, 6, 5, 4, 3, 2}
Suits = {♠,♥,♦, ♣}
Ranks × Suits = {

(A, ♠), (A,♥), (A,♦), (A, ♣),
(K, ♠), ...,
(2, ♠), (2,♥), (2,♦), (2, ♣)

}

By Trainler - Own work, CC BY 3.0,
https://commons.wikimedia.org/w/index.php?curid=7104281

What’s this CROSS JOIN?

https://commons.wikimedia.org/w/index.php?curid=7104281

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

6. The subset sum problem with SQL

SELECT
totals.id,
totals.total,
min (sum) KEEP (

DENSE_RANK FIRST ORDER BY abs(total - sum)
) AS best,
min (calc) KEEP (

DENSE_RANK FIRST ORDER BY abs(total - sum)
) AS calc

FROM totals
CROSS JOIN sums
GROUP BY totals.id, totals.total

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

6. The subset sum problem with SQL

SELECT DISTINCT
totals.id,
totals.total,
first_value (sum) OVER w AS best,
first_value (calc) OVER w AS calc

FROM totals
CROSS JOIN sums
WINDOW w AS (
PARTITION BY totals.id, totals.total
ORDER BY abs(total - sum)

)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

WITH sums(sum, id, calc) AS (
SELECT item, id, to_char(item) FROM items
UNION ALL
SELECT item + sum, items.id, calc || ' + ' || item
FROM sums JOIN items ON sums.id < items.id

)
SELECT

totals.id,
totals.total,
min (sum) KEEP (
DENSE_RANK FIRST ORDER BY abs(total - sum)

) AS best,
min (calc) KEEP (
DENSE_RANK FIRST ORDER BY abs(total - sum)

) AS calc
FROM totals
CROSS JOIN sums
GROUP BY totals.id, totals.total

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Excellent!

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Capping a running total

The running total
must not be < 0

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Capping a running total

DATE	AMOUNT
2012-01-01	800
2012-02-01	1900
2012-03-01	1750
2012-04-01	-20000
2012-05-01	900
2012-06-01	3900
2012-07-01	-2600
2012-08-01	-2600
2012-09-01	2100
2012-10-01	-2400
2012-11-01	1100
2012-12-01	1300

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Capping a running total

DATE	AMOUNT	TOTAL
2012-01-01	800	800
2012-02-01	1900	2700
2012-03-01	1750	4450
2012-04-01	-20000	0
2012-05-01	900	900
2012-06-01	3900	4800
2012-07-01	-2600	2200
2012-08-01	-2600	0
2012-09-01	2100	2100
2012-10-01	-2400	0
2012-11-01	1100	1100
2012-12-01	1300	2400

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Capping a running total

DATE	AMOUNT	TOTAL
2012-01-01	800	800
2012-02-01	1900	2700
2012-03-01	1750	4450
2012-04-01	-20000	0
2012-05-01	900	900
2012-06-01	3900	4800
2012-07-01	-2600	2200
2012-08-01	-2600	0
2012-09-01	2100	2100
2012-10-01	-2400	0
2012-11-01	1100	1100
2012-12-01	1300	2400

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Capping a running total

DATE	AMOUNT	TOTAL
2012-01-01	800	800
2012-02-01	1900	2700
2012-03-01	1750	4450
2012-04-01	-20000	0
2012-05-01	900	900
2012-06-01	3900	4800
2012-07-01	-2600	2200
2012-08-01	-2600	0
2012-09-01	2100	2100
2012-10-01	-2400	0
2012-11-01	1100	1100
2012-12-01	1300	2400

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Capping a running total

Reactive
programming!

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Capping a running total

How to do it?

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Capping a running total

How to do it?
1. Window functions?

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Capping a running total

How to do it?
1. Window functions?

Probably not possible

2. Recursive SQL?

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Capping a running total

How to do it?
1. Window functions?

Probably not possible

2. Recursive SQL?
Not geeky enough

3. Obscure, vendor-specific SQL?

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Capping a running total

How to do it?
1. Window functions?

Probably not possible

2. Recursive SQL?
Not geeky enough

3. Obscure, vendor-specific SQL?
Jackpot.
Someone else will maintain it.

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Capping a running total

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Capping a running total

SELECT ... FROM some_table

-- Put this after any table
MODEL ...

Oracle MODEL: Spreadsheet SQL!

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Capping a running total

SELECT ... FROM some_table

-- Or also
SPREADSHEET ...

Oracle MODEL: Spreadsheet SQL!

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Capping a running total

MODEL
-- The spreadsheet dimensions
DIMENSION BY ...

-- The spreadsheet cell type
MEASURES ...

-- The spreadsheet formulas
RULES ...

Oracle MODEL clause

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Capping a running total

MODEL
-- The spreadsheet dimensions
DIMENSION BY ...

-- The spreadsheet cell type
MEASURES ...

-- The spreadsheet formulas
RULES ...

Oracle MODEL clause

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Capping a running total

MODEL
-- The spreadsheet dimensions
DIMENSION BY ...

-- The spreadsheet cell type
MEASURES ...

-- The spreadsheet formulas
RULES ...

Oracle MODEL clause

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Capping a running total

MODEL
-- The spreadsheet dimensions
DIMENSION BY ...

-- The spreadsheet cell type
MEASURES ...

-- The spreadsheet formulas
RULES ...

Oracle MODEL clause

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Capping a running total

SELECT *
FROM (

SELECT date, amount, 0 AS total
FROM amounts

)

-- Prepare the data

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Capping a running total

SELECT *
FROM (

SELECT date, amount, 0 AS total
FROM amounts

)
MODEL

DIMENSION BY (row_number() OVER (ORDER BY date) AS rn)

-- Individually enumerate each row with a row number

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Capping a running total

SELECT *
FROM (

SELECT date, amount, 0 AS total
FROM amounts

)
MODEL

DIMENSION BY (row_number() OVER (ORDER BY date) AS rn)
MEASURES (date, amount, total)

-- Each «cell» contains these three values

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Capping a running total

SELECT *
FROM (

SELECT date, amount, 0 AS total
FROM amounts

)
MODEL

DIMENSION BY (row_number() OVER (ORDER BY date) AS rn)
MEASURES (date, amount, total)
RULES (
total[any] = greatest(0,

total[cv(rn) - 1] + amount[cv(rn)])
)

-- «simple» rule based on cv(rn) (cv = current value)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Capping a running total

SELECT *
FROM (

SELECT date, amount, 0 AS total
FROM amounts

)
MODEL

DIMENSION BY (row_number() OVER (ORDER BY date) AS rn)
MEASURES (date, amount, total)
RULES (
total[any] = greatest(0, -- Getting NULLs right

coalesce(total[cv(rn) - 1], 0) + amount[cv(rn)])
)

-- «simple» rule based on cv(rn) (cv = current value)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Capping a running total

Reactive SQL:
It’s the future!

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Capping a running total

How to do it in
PostgreSQL?

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Capping a running total

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Capping a running total

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Capping a running total

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Capping a running total

Read the whitepaper
for more details:
http://www.oracle.com/technetwork/mi
ddleware/bi-foundation/10gr1-twp-bi-
dw-sqlmodel-131067.pdf

(Google «Oracle MODEL Whitepaper»)

http://www.oracle.com/technetwork/middleware/bi-foundation/10gr1-twp-bi-dw-sqlmodel-131067.pdf

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Capping a running total

Extra credit:

After this talk, do tricks
#2 - #6 with MODEL!

(☞ﾟヮﾟ)☞ ☜(ﾟヮﾟ☜)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Time series pattern recognition

ID	VALUE_DATE	AMOUNT	LEN
9997	2014-03-18	+ 99.17	1
9981	2014-03-16	- 71.44	4
9979	2014-03-16	- 94.60	4
9977	2014-03-16	- 6.96	4
9971	2014-03-15	- 65.95	4
9964	2014-03-15	+ 15.13	3
9962	2014-03-15	+ 17.47	3
9960	2014-03-15	+ 3.55	3
9959	2014-03-14	- 32.00	1

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Time series pattern recognition

ID	VALUE_DATE	AMOUNT	LEN	TRIGGER
9997	2014-03-18	+ 99.17	1	
9981	2014-03-16	- 71.44	4	
9979	2014-03-16	- 94.60	4	x
9977	2014-03-16	- 6.96	4	
9971	2014-03-15	- 65.95	4	
9964	2014-03-15	+ 15.13	3	
9962	2014-03-15	+ 17.47	3	
9960	2014-03-15	+ 3.55	3	
9959	2014-03-14	- 32.00	1	

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

ID	VALUE_DATE	AMOUNT	LEN	TRIGGER
9997	2014-03-18	+ 99.17	1	
9981	2014-03-16	- 71.44	4	
9979	2014-03-16	- 94.60	4	x
9977	2014-03-16	- 6.96	4	
9971	2014-03-15	- 65.95	4	
9964	2014-03-15	+ 15.13	3	
9962	2014-03-15	+ 17.47	3	
9960	2014-03-15	+ 3.55	3	
9959	2014-03-14	- 32.00	1	

8. Time series pattern recognition

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Time series pattern recognition

Trigger on the 3rd

repetition of an event if
the event occurs more
than 3 times.

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Time series pattern recognition

How to do it?
1. Window functions?

Probably not possible

2. Recursive SQL?
Not geeky enough

3. Obscure, vendor-specific SQL?
Jackpot.
Someone else will maintain it.

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Time series pattern recognition

SELECT ... FROM some_table

-- Put this after any table to pattern-match
-- the table’s contents
MATCH_RECOGNIZE (...)

Oracle 12c MATCH_RECOGNIZE!

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Time series pattern recognition

SELECT *
FROM series
MATCH_RECOGNIZE (
ORDER BY ...

-- Pattern matching is done in this order
)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Time series pattern recognition

SELECT *
FROM series
MATCH_RECOGNIZE (
ORDER BY ...
MEASURES ...

-- These are the columns produced by matches
)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Time series pattern recognition

SELECT *
FROM series
MATCH_RECOGNIZE (
ORDER BY ...
MEASURES ...
ALL ROWS PER MATCH

-- A short specification of what rows are
-- returned from each match

)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Time series pattern recognition

SELECT *
FROM series
MATCH_RECOGNIZE (
ORDER BY ...
MEASURES ...
ALL ROWS PER MATCH
PATTERN (...)

-- «Regular expressions» of events to match
)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Time series pattern recognition

SELECT *
FROM series
MATCH_RECOGNIZE (
ORDER BY ...
MEASURES ...
ALL ROWS PER MATCH
PATTERN (...)
DEFINE ...

-- The definitions of «what is an event»
)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Time series pattern recognition

Ready?

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Time series pattern recognition

ID	VALUE_DATE	AMOUNT	TRIGGER
9997	2014-03-18	+ 99.17	
9981	2014-03-16	- 71.44	
9979	2014-03-16	- 94.60	x
9977	2014-03-16	- 6.96	
9971	2014-03-15	- 65.95	
9964	2014-03-15	+ 15.13	
9962	2014-03-15	+ 17.47	
9960	2014-03-15	+ 3.55	
9959	2014-03-14	- 32.00	

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Time series pattern recognition

SELECT *
FROM series
MATCH_RECOGNIZE (
ORDER BY id
MEASURES ...
ALL ROWS PER MATCH
PATTERN (...)
DEFINE ...

)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Time series pattern recognition

SELECT *
FROM series
MATCH_RECOGNIZE (
ORDER BY id
MEASURES classifier() AS trg
ALL ROWS PER MATCH
PATTERN (...)
DEFINE ...

)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Time series pattern recognition

SELECT *
FROM series
MATCH_RECOGNIZE (
ORDER BY id
MEASURES classifier() AS trg
ALL ROWS PER MATCH
PATTERN (S (R X R+)?)
DEFINE ...

)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Time series pattern recognition

SELECT *
FROM series
MATCH_RECOGNIZE (
ORDER BY id
MEASURES classifier() AS trg
ALL ROWS PER MATCH
PATTERN (S (R X R+)?)
DEFINE

R AS sign(R.amount) = prev(sign(R.amount)),
X AS sign(X.amount) = prev(sign(X.amount))

)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Time series pattern recognition

SELECT *
FROM series
MATCH_RECOGNIZE (
ORDER BY id
MEASURES classifier() AS trg
ALL ROWS PER MATCH
PATTERN (S (R X R+)?)
DEFINE

R AS sign(R.amount) = prev(sign(R.amount)),
X AS sign(X.amount) = prev(sign(X.amount))

)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Time series pattern recognition

ID	VALUE_DATE	AMOUNT	TRG
9997	2014-03-18	+ 99.17	S
9981	2014-03-16	- 71.44	R
9979	2014-03-16	- 94.60	X
9977	2014-03-16	- 6.96	R
9971	2014-03-15	- 65.95	S
9964	2014-03-15	+ 15.13	S
9962	2014-03-15	+ 17.47	S
9960	2014-03-15	+ 3.55	S
9959	2014-03-14	- 32.00	S

PATTERN (S (R X R+)?)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Time series pattern recognition

ID	VALUE_DATE	AMOUNT	TRG
9997	2014-03-18	+ 99.17	S
9981	2014-03-16	- 71.44	R
9979	2014-03-16	- 94.60	X
9977	2014-03-16	- 6.96	R
9971	2014-03-15	- 65.95	S
9964	2014-03-15	+ 15.13	S
9962	2014-03-15	+ 17.47	S
9960	2014-03-15	+ 3.55	S
9959	2014-03-14	- 32.00	S

PATTERN (S (R X R+)?)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Time series pattern recognition

ID	VALUE_DATE	AMOUNT	TRG
9997	2014-03-18	+ 99.17	S
9981	2014-03-16	- 71.44	R
9979	2014-03-16	- 94.60	X
9977	2014-03-16	- 6.96	R
9971	2014-03-15	- 65.95	S
9964	2014-03-15	+ 15.13	S
9962	2014-03-15	+ 17.47	S
9960	2014-03-15	+ 3.55	S
9959	2014-03-14	- 32.00	S

PATTERN (S (R X R+)?)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Time series pattern recognition

ID	VALUE_DATE	AMOUNT	TRG
9997	2014-03-18	+ 99.17	S
9981	2014-03-16	- 71.44	R
9979	2014-03-16	- 94.60	X
9977	2014-03-16	- 6.96	R
9971	2014-03-15	- 65.95	S
9964	2014-03-15	+ 15.13	S
9962	2014-03-15	+ 17.47	S
9960	2014-03-15	+ 3.55	S
9959	2014-03-14	- 32.00	S

PATTERN (S (R X R+)?)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Time series pattern recognition

SELECT
id, value_date, amount,
CASE trg WHEN 'X' THEN 'X' END trg

FROM series
MATCH_RECOGNIZE (

ORDER BY id
MEASURES classifier() AS trg
ALL ROWS PER MATCH
PATTERN (S (R X R+)?)
DEFINE
R AS sign(R.amount) = prev(sign(R.amount)),
X AS sign(X.amount) = prev(sign(X.amount))

)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Time series pattern recognition

ID	VALUE_DATE	AMOUNT	TRG
9997	2014-03-18	+ 99.17	
9981	2014-03-16	- 71.44	
9979	2014-03-16	- 94.60	X
9977	2014-03-16	- 6.96	
9971	2014-03-15	- 65.95	
9964	2014-03-15	+ 15.13	
9962	2014-03-15	+ 17.47	
9960	2014-03-15	+ 3.55	
9959	2014-03-14	- 32.00	

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Time series pattern recognition

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Capping a running total

How to do it in
PostgreSQL?

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

7. Capping a running total

How to do it in
PostgreSQL?

Not yet – But it’s a SQL:2016 standard!

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Time series pattern recognition

Read the whitepaper
for more details:
http://www.oracle.com/ocom/groups/p
ublic/@otn/documents/webcontent/19
65433.pdf

(Google «Oracle MATCH_RECOGNIZE Whitepaper»)

http://www.oracle.com/ocom/groups/public/@otn/documents/webcontent/1965433.pdf

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Time series pattern recognition

Extra credit:

After this talk, do tricks #2 -
#7 with MATCH_RECOGNIZE!

☜(˚▽˚)☞

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Time series pattern recognition (not kidding)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Time series pattern recognition (not kidding)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

8. Time series pattern recognition (not kidding)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

9. Pivoting and unpivoting

Now that you’re
experts...

... this is almost too embarassingly
simple

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

9. Pivoting and unpivoting

NAME	TITLE	RATING
A. GRANT	ANNIE IDENTITY	G
A. GRANT	DISCIPLE MOTHER	PG
A. GRANT	GLORY TRACY	PG-13
A. HUDSON	LEGEND JEDI	PG
A. CRONYN	IRON MOON	PG
A. CRONYN	LADY STAGE	PG
B. WALKEN	SIEGE MADRE	R

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Pivoting

9. Pivoting and unpivoting

NAME	NC-17	PG	G	PG-13	R
A. GRANT	3	6	5	3	1
A. HUDSON	12	4	7	9	2
A. CRONYN	6	9	2	6	4
B. WALKEN	8	8	4	7	3
B. WILLIS	5	5	14	3	6
C. DENCH	6	4	5	4	5
C. NEESON	3	8	4	7	3

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Unpivoting

9. Pivoting and unpivoting

NAME	RATING	COUNT
A. GRANT	NC-17	3
A. GRANT	PG	6
A. GRANT	G	5
A. GRANT	PG-13	3
A. GRANT	R	6
A. HUDSON	NC-17	12
A. HUDSON	PG	4

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Only PostgreSQL so far

9. Pivoting and unpivoting

SELECT
first_name, last_name,
count(*) FILTER (WHERE rating = 'NC-17') AS "NC-17",
count(*) FILTER (WHERE rating = 'PG') AS "PG",
count(*) FILTER (WHERE rating = 'G') AS "G",
count(*) FILTER (WHERE rating = 'PG-13') AS "PG-13",
count(*) FILTER (WHERE rating = 'R') AS "R"

FROM actor AS a
JOIN film_actor AS fa USING (actor_id)
JOIN film AS f USING (film_id)
GROUP BY actor_id

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

All others

9. Pivoting and unpivoting

SELECT
first_name, last_name,
count(CASE rating WHEN 'NC-17' THEN 1 END) AS "NC-17",
count(CASE rating WHEN 'PG' THEN 1 END) AS "PG",
count(CASE rating WHEN 'G' THEN 1 END) AS "G",
count(CASE rating WHEN 'PG-13' THEN 1 END) AS "PG-13",
count(CASE rating WHEN 'R' THEN 1 END) AS "R"

FROM actor AS a
JOIN film_actor AS fa USING (actor_id)
JOIN film AS f USING (film_id)
GROUP BY actor_id

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

9. Pivoting and unpivoting

SELECT
actor_id, first_name, last_name,
"NC-17", "PG", "G", "PG-13", "R"

FROM (
SELECT actor_id, first_name, last_name, rating
FROM actor a
JOIN film_actor fa USING (actor_id)
JOIN film f USING (film_id)

)
PIVOT (
count(*) FOR rating IN (
'NC-17' AS "NC-17",
'PG' AS "PG",
'G' AS "G",
'PG-13' AS "PG-13",
'R' AS "R"

)
)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

9. Pivoting and unpivoting

SELECT something, something
FROM some_table
PIVOT (
count(*) FOR rating IN (

'NC-17' AS "NC-17",
'PG' AS "PG",
'G' AS "G",
'PG-13' AS "PG-13",
'R' AS "R"

)
)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

9. Pivoting and unpivoting

SELECT something, something
FROM some_table
UNPIVOT (
count FOR rating IN (

"NC-17" AS 'NC-17',
"PG" AS 'PG',
"G" AS 'G',
"PG-13" AS 'PG-13',
"R" AS 'R'

)
)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

That’s it

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

9. Pivoting and unpivoting

Pivoting:
Values from a single column become
columns containing aggregations

Unpivoting:
Columns become values in a single column

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

9. Pivoting and unpivoting

Image credit: https://www.flickr.com/photos/jakerust/16661140289 By GotCredit. License CC-BY 2.0

https://www.flickr.com/photos/jakerust/16661140289

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

10. Abusing XML and JSON

XML and JSON in
the database

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

10. Abusing XML and JSON

Image credit: https://www.flickr.com/photos/bensonkua/6326968245 By Benson Kua. License CC-BY SA 2.0

First, a word of truth

https://www.flickr.com/photos/bensonkua/6326968245

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

10. Abusing XML and JSON

JSON is just XML
with less features
and less syntax

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

10. Abusing XML and JSON

Everyone knows:

XML is awesome.

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

10. Abusing XML and JSON

Corollary:

JSON is less awesome

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

10. Abusing XML and JSON

Side note

XSLT is the only thing even
more awesome than SQL

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

10. Abusing XML and JSON

<actors>
<actor>
<first-name>Bud</first-name>
<last-name>Spencer</last-name>
<films>God Forgives... I Don’t, Double Trouble, They Call Him

Bulldozer</films>
</actor>
<actor>
<first-name>Terence</first-name>
<last-name>Hill</last-name>
<films>God Forgives... I Don’t, Double Trouble, Lucky Luke</films>

</actor>
</actors>

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

10. Abusing XML and JSON

WITH RECURSIVE
x(v) AS (SELECT '...'::xml),
actors(

actor_id, first_name, last_name, films
) AS (...),
films(

actor_id, first_name, last_name,
film_id, film

) AS (...)
SELECT *
FROM films

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

10. Abusing XML and JSON

WITH RECURSIVE
x(v) AS (SELECT '

<actors>
<actor>

<first-name>Bud</first-name>
<last-name>Spencer</last-name>
<films>God Forgives... I Don’t, Double Trouble, They Call Him

Bulldozer</films>
</actor>
<actor>

<first-name>Terence</first-name>
<last-name>Hill</last-name>
<films>God Forgives... I Don’t, Double Trouble, Lucky Luke</films>

</actor>
</actors>'::xml),

actors(actor_id, first_name, last_name, films) AS (...),
films(actor_id, first_name, last_name, film_id, film) AS (...)

SELECT *
FROM films

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

10. Abusing XML and JSON

WITH RECURSIVE
x(v) AS (SELECT '...'::xml),
actors(actor_id, first_name, last_name, films) AS (
SELECT

row_number() OVER (),
(xpath('//first-name/text()', t.v))[1]::TEXT,
(xpath('//last-name/text()' , t.v))[1]::TEXT,
(xpath('//films/text()' , t.v))[1]::TEXT

FROM unnest(xpath('//actor', (SELECT v FROM x))) t(v)
),
films(actor_id, first_name, last_name, film_id, film)

AS (...)
SELECT *
FROM films

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

10. Abusing XML and JSON

WITH RECURSIVE
x(v) AS (SELECT '...'::xml),
actors(actor_id, first_name, last_name, films) AS (...),
films(actor_id, first_name, last_name, film_id, film) AS (

SELECT actor_id, first_name, last_name, 1,
regexp_replace(films, ',.+', '')

FROM actors
UNION ALL
SELECT actor_id, a.first_name, a.last_name, f.film_id + 1,

regexp_replace(a.films, '.*' || f.film || ', ?(.*?)(,.+)?', '\1')
FROM films AS f
JOIN actors AS a USING (actor_id)
WHERE a.films NOT LIKE '%' || f.film

)
SELECT *
FROM films

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

10 SQL tricks to convince you SQL is awesome

1. Everything is a table

2. Data generation with recursive SQL

3. Running total calculations

4. Finding the length of a series

5. Finding the largest series with no gaps

6. The subset sum problem with SQL

7. Capping a running total

8. Time series pattern recognition

9. Pivoting and unpivoting

10.Abusing XML and JSON (don’t do this at home)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

10 SQL tricks to convince you SQL is awesome

Noun

awe (uncountable)

1. A feeling of fear and reverence.

2. A feeling of amazement.

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

10 SQL tricks to convince you SQL is awesome

Noun

awe (uncountable)

1. A feeling of fear and reverence.

2. A feeling of amazement.

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

10 SQL tricks to convince you SQL is awesome

Noun

maze (plural mazes)

1. A labyrinth; a puzzle consisting of a
complicated network of paths or passages, the
aim of which is to find one's way.

2. Something made up of many confused or
conflicting elements; a tangle.

3. Confusion of thought; perplexity; uncertainty;
state of bewilderment.

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

10 SQL tricks to convince you SQL is awesome

Noun

maze (plural mazes)

1. A labyrinth; a puzzle consisting of a
complicated network of paths or passages, the
aim of which is to find one's way.

2. Something made up of many confused or
conflicting elements; a tangle.

3. Confusion of thought; perplexity; uncertainty;
state of bewilderment.

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Why do I talk about SQL?

SQL is the only ever successful,
mainstream, and general-
purpose 4GL (Fourth-
Generation Programming
Language)

And it is awesome!

https://en.wikipedia.org/wiki/Fourth-generation_programming_language

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Why do I talk about SQL?

Not a single,
explicit algorithm!

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Why doesn’t anyone else talk about SQL?

¯_(シ)_/¯

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Can I write SQL in Java?

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Can I write SQL in Java? – Yes. With jOOQ

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Can I write SQL in Java? – Yes. With jOOQ

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Can I write SQL in Java? – Yes. With jOOQ

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

So what’s the key takeaway?

1. Can you do it in the database?

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

So what’s the key takeaway?

1. Can you do it in the database? Yes

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

So what’s the key takeaway?

1. Can you do it in the database? Yes

2. Can you do it in the database?

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

So what’s the key takeaway?

1. Can you do it in the database? Yes

2. Can you do it in the database? Yes

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

So what’s the key takeaway?

1. Can you do it in the database? Yes

2. Can you do it in the database? Yes
(... after visiting my 2 day SQL training)

http://www.jooq.org/training

http://www.jooq.org/training

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

So what’s the key takeaway?

1. Can you do it in the database? Yes

2. Can you do it in the database? Yes
(... after visiting my 2 day SQL training)

3. Can you do it in your database?

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

So what’s the key takeaway?

1. Can you do it in the database? Yes

2. Can you do it in the database? Yes
(... after visiting my 2 day SQL training)

3. Can you do it in your database? Yes

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

So what’s the key takeaway?

1. Can you do it in the database? Yes

2. Can you do it in the database? Yes
(... after visiting my 2 day SQL training)

3. Can you do it in your database? Yes
(... unless you're using MySQL)

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

So what’s the key takeaway?

1. Can you do it in the database? Yes

2. Can you do it in the database? Yes
(... after visiting my 2 day SQL training)

3. Can you do it in your database? Yes
(... unless you're using MySQL)

4. Should you do it in the database?

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

So what’s the key takeaway?

1. Can you do it in the database? Yes

2. Can you do it in the database? Yes
(... after visiting my 2 day SQL training)

3. Can you do it in your database? Yes
(... unless you're using MySQL)

4. Should you do it in the database? No

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

So what’s the key takeaway?

1. Can you do it in the database? Yes

2. Can you do it in the database? Yes
(... after visiting my 2 day SQL training)

3. Can you do it in your database? Yes
(... unless you're using MySQL)

4. Should you do it in the database? No

JUST

KIDDING!

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

So what’s the key takeaway?

1. Can you do it in the database? Yes

2. Can you do it in the database? Yes
(... after visiting my 2 day SQL training)

3. Can you do it in your database? Yes
(... unless you're using MySQL)

4. Should you do it in the database? Yes

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

So what’s the key takeaway?

1. Can you do it in the database? Yes

2. Can you do it in the database? Yes
(... after visiting my 2 day SQL training)

3. Can you do it in your database? Yes
(... unless you're using MySQL)

4. Should you do it in the database? Yes

5. Do listicles attract attention?

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

So what’s the key takeaway?

1. Can you do it in the database? Yes

2. Can you do it in the database? Yes
(... after visiting my 2 day SQL training)

3. Can you do it in your database? Yes
(... unless you're using MySQL)

4. Should you do it in the database? Yes

5. Do listicles attract attention? Yes

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

So what’s the key takeaway?

1. Can you do it in the database? Yes

2. Can you do it in the database? Yes
(... after visiting my 2 day SQL training)

3. Can you do it in your database? Yes
(... unless you're using MySQL)

4. Should you do it in the database? Yes

5. Do listicles attract attention? Yes

6. Will this talk ever end?

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

So what’s the key takeaway?

1. Can you do it in the database? Yes

2. Can you do it in the database? Yes
(... after visiting my 2 day SQL training)

3. Can you do it in your database? Yes
(... unless you're using MySQL)

4. Should you do it in the database? Yes

5. Do listicles attract attention? Yes

6. Will this talk ever end? Yes

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

If you haven’t had enough

Google «10 SQL Tricks»
and find this talk’s transcript

https://blog.jooq.org/2016/04/25/10-sql-
tricks-that-you-didnt-think-were-possible/

https://blog.jooq.org/2016/04/25/10-sql-tricks-that-you-didnt-think-were-possible/

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

10 SQL tricks to convince you SQL is awesome

Not that
hard to

find

Copyright (c) 2009-2018 by Data Geekery GmbH. Slides licensed under CC BY SA 3.0

Thank you
Check out our trainings:

http://www.jooq.org/training

Coordinates
• Blog: http://blog.jooq.org (excellent Java SQL content)

• Twitter: @JavaOOQ / @lukaseder (more lame jokes)

• E-Mail: lukas.eder@datageekery.com

• Bank account: CH57 8148 7000 0SQL AWSM 7

http://www.jooq.org/training
http://blog.jooq.org/
https://twitter.com/JavaOOQ
https://twitter.com/lukaseder
mailto:lukas.eder@datageekery.com

