
Reaching 1 billion rows / second

Hans-Jürgen Schönig
www.postgresql-support.de

Hans-Jürgen Schönig
www.postgresql-support.de

Who we are

Hans-Jürgen Schönig
www.postgresql-support.de

Cybertec

I We are a PostgreSQL support company
I Clients around the globe
I What we do:

I PostgreSQL 24x7 support
I Training
I Consulting
I Geodata
I Scaling

Hans-Jürgen Schönig
www.postgresql-support.de

Reaching a milestone

Hans-Jürgen Schönig
www.postgresql-support.de

Goal

I Processing 1 billion rows / second
I Show a path to even more scalability
I Silence the “scalability” discussion at some point
I See where the limitations are
I Do it WITHOUT commercial tools, warehousing tools, etc.

Hans-Jürgen Schönig
www.postgresql-support.de

A word of caution

I The goal is NOT to scale EVERY query to 1 billion rows /
second

I This is attempt to show a path to enlightenment for “vanilla”
PostgreSQL

Hans-Jürgen Schönig
www.postgresql-support.de

Traditional PostgreSQL limitations

I Traditionally:
I We could only use 1 CPU core per query
I Scaling was possible by running more than one query at a time
I Usually hard to do

I Single core performance is limited

Hans-Jürgen Schönig
www.postgresql-support.de

PL/Proxy: The traditional way to do it

I PL/Proxy is a stored procedure language to scale out to shards.
I Worked nicely for OLTP workloads
I Somewhat usable for analytics

I A LOT of manual work

Hans-Jürgen Schönig
www.postgresql-support.de

PL/Proxy: An example

I A function written in PL/Proxy
I Use input values to calculate shards

I Downside:
I A lot of manual work
I Not really transparent to the application

SELECT func('hs@cybertec.at');

Hans-Jürgen Schönig
www.postgresql-support.de

The 1 billion row challenge

Hans-Jürgen Schönig
www.postgresql-support.de

Coming up with a data structure

I We tried to keep that simple:

node=# \d t_demo
Table "public.t_demo"

Column | Type | Collation | Nullable |
--------+---------+-----------+----------+
id | serial | | not null |
grp | integer | | |
data | real | | |

Indexes:
"idx_id" btree (id)

Hans-Jürgen Schönig
www.postgresql-support.de

The query

SELECT grp, count(data)
FROM t_demo
GROUP BY 1;

Hans-Jürgen Schönig
www.postgresql-support.de

Performance hint

I Yes, this is a small table
I If you can scale in a linear way, it makes no difference

I Just add boxes

Hans-Jürgen Schönig
www.postgresql-support.de

Single server performance

Hans-Jürgen Schönig
www.postgresql-support.de

Tweaking a simple server

I The main questions are:
I How much can we expect from a single server?
I How well does it scale with many CPUs?
I How far can we get?

Hans-Jürgen Schönig
www.postgresql-support.de

PostgreSQL parallelism

I Parallel queries have been added in PostgreSQL 9.6
I It can do a lot
I It is by far not feature complete yet

I Number of workers will be determined by the PostgreSQL
optimizer

I We do not want that
I We want ALL cores to be at work

Hans-Jürgen Schönig
www.postgresql-support.de

Parallelism in PostgreSQL 10.0

I A lot more features are there
I Many queries can be improved
I There is still some work to do

Hans-Jürgen Schönig
www.postgresql-support.de

Adjusting CPU core usage

I Usually the number of processes per scan is derived from the
size of the table

test=# SHOW min_parallel_relation_size ;
min_parallel_relation_size

8MB

(1 row)

I One process is added if the tablesize triples

Hans-Jürgen Schönig
www.postgresql-support.de

Overruling the planner

I We could never have enough data to make PostgreSQL go for
16 or 32 cores.

I Even if the value is set to a couple of kilobytes.
I The default mechanism can be overruled:

test=# ALTER TABLE t_demo
SET (parallel_workers = 32);

ALTER TABLE

Hans-Jürgen Schönig
www.postgresql-support.de

Making full use of cores

I How well does PostgreSQL scale on a single box?
I For the next test we assume that I/O is not an issue

I If I/O does not keep up, CPU does not make a difference
I Make sure that data can be read fast enough.

I Observation: 1 SSD might not be enough to feed a modern
Intel chip

Hans-Jürgen Schönig
www.postgresql-support.de

Some simple math

I 1 SSD: 500 MB / sec (roughly)
I 1 TB of data = 2000 seconds = 33 minutes
I Scaling to countless disks and cores is necessary anyway

Hans-Jürgen Schönig
www.postgresql-support.de

Single node scalability (1)

{
width=70% }

Hans-Jürgen Schönig
www.postgresql-support.de

Single node scalability (2)

I We used a 16 core box here
I As you can see, the query scales up nicely
I Beyond 16 cores hyperthreading kicks in

I We managed to gain around 18%

Hans-Jürgen Schönig
www.postgresql-support.de

Single node scalability (3)

I On a single Google VM we could reach close to 40 million rows
/ second

I For many workloads this is already more than enough
I Rows / sec will of course depend on type of query

Hans-Jürgen Schönig
www.postgresql-support.de

Moving on to many nodes

Hans-Jürgen Schönig
www.postgresql-support.de

The basic system architecture (1)

I We want to shard data to as many nodes as needed
I For the demo: Place 100 million rows on each node

I We do so to eliminate the I/O bottleneck
I In case I/O happens we can always compensate using more

servers

I Use parallel queries on each shard
I Want this to be a PostgreSQL and not a storage benchmark

Hans-Jürgen Schönig
www.postgresql-support.de

The basic system architecture (2)

{
width=80% }

Hans-Jürgen Schönig
www.postgresql-support.de

Testing with two nodes (1)

explain SELECT grp, COUNT(data) FROM t_demo GROUP BY 1;
Finalize HashAggregate

Group Key: t_demo.grp
-> Append

-> Foreign Scan (partial aggregate)
-> Foreign Scan (partial aggregate)
-> Partial HashAggregate

Group Key: t_demo.grp
-> Seq Scan on t_demo

Hans-Jürgen Schönig
www.postgresql-support.de

Testing with two nodes (2)

I Throughput doubles as long as partial results are small
I Planner pushes down stuff nicely
I Linear increases are necessary to scale to 1 billion rows

Hans-Jürgen Schönig
www.postgresql-support.de

Preconditions to make it work (1)

I postgres_fdw uses cursors on the remote side
I cursor_tuple_fraction has to be set to 1 to improve the

planning process
I set fetch_size to a large value

I That is the easy part

Hans-Jürgen Schönig
www.postgresql-support.de

Preconditions to make it work (2)

I We have to make sure that all remote database servers work at
the same time

I This requires “parallel append and async fetching”
I All queries are sent to the many nodes in parallel
I Data can be fetched in parallel
I We cannot afford to wait for each nodes to complete if we want

to scale in a linear way

Hans-Jürgen Schönig
www.postgresql-support.de

Preconditions to make it work (3)

I PostgreSQL could not be changed without substantial work
being done recently

I Traditionally joins had to be done BEFORE aggregation
I This is a showstopper for distributed aggregation because all the

data has to be fetched from the remote host before aggregation

I Without this change the test is not possible.

Hans-Jürgen Schönig
www.postgresql-support.de

Preconditions to make it work (4)

I Easy tasks:
I Aggregates have to be implemented to handle partial results

coming from shards
I Code is simple and available as extension

I For the test we implemented a handful of aggregates

Hans-Jürgen Schönig
www.postgresql-support.de

Parallel execution on shards is now possible

I Dissect aggregation
I Send partial queries to shards in parallel
I Perform parallel execution on shards
I Add up data on main node

Hans-Jürgen Schönig
www.postgresql-support.de

Final results

node=# SELECT grp, count(data) FROM t_demo GROUP BY 1;
grp | count

-----+-----------
0 | 320000000
1 | 320000000

...
9 | 320000000

(10 rows)
Planning time: 0.955 ms
Execution time: 2910.367 ms

Hans-Jürgen Schönig
www.postgresql-support.de

Hardware used

I We used 32 boxes (16 cores) on Google
I Data was in memory
I Adding more servers is EASY
I Price tag: The staggering amount of EUR 28.14 (for

development, testing and running the test)

Hans-Jürgen Schönig
www.postgresql-support.de

A look at PostgreSQL 10.0

I A lot more parallelism will be available
I Many executor nodes will enjoy parallel execution

I PostgreSQL 10.0 will be a giant leap forward

Hans-Jürgen Schönig
www.postgresql-support.de

More complex plans

I ROLLUP / CUBE / GROUPING SETS has to wait for 10.0
I A patch for that has been seen on the mailing list

I Be careful with complex intermediate results
I Avoid sorting of large amounts of data
I Some things are just harder on large data sets

Hans-Jürgen Schönig
www.postgresql-support.de

Future ideas: JIT compilation

I JIT will allow us to do the same thing with fewer CPUs
I Will significantly improve throughput
I Some project teams are working on that

Hans-Jürgen Schönig
www.postgresql-support.de

Future ideas: “Deeper execution”

I So far only one “stage” of execution is used
I Nothing stops us from building “trees” of servers

I More complex operations can be done
I Infrastructure is in place

Hans-Jürgen Schönig
www.postgresql-support.de

Future things: Column stores

I Column stores will bring a real boost
I Vectorization can speed up things drastically
I Many commercial vendors already do that
I GPUs may also be useful

Hans-Jürgen Schönig
www.postgresql-support.de

Finally

I Any questions?

Hans-Jürgen Schönig
www.postgresql-support.de

Contact us

Cybertec Schönig & Schönig GmbH
Hans-Jürgen Schönig
Gröhrmühlgasse 26
A-2700 Wiener Neustadt

Email: hs@cybertec.at
www.postgresql-support.de

Follow us on Twitter: @PostgresSupport

Hans-Jürgen Schönig
www.postgresql-support.de

	Who we are
	Reaching a milestone
	The 1 billion row challenge
	Single server performance
	Moving on to many nodes

