Building a Lightweight High Availability Cluster
Using RepMgr

Stephan Miiller

June 29, 2018

Schedule

Introduction

m Postgres high availability options
m Write ahead log and streaming replication
m Built-in tools

m Cluster management with RepMgr

m Configuration and usage
m Automatic failover with RepMgrD

Backup and Recovery with BarMan
m Configuration and usage

Wrap-up & Discussion

Please ask questions

Personal Background

IT Operations, since 2.5 years
OLMeRO

m Swiss market leader for internet solution for construction sector
m Tender and construction site management

® renovero.ch
m Craftmens’ offerings for private customers
Belongs to tamedia portfolio

m Publishing company
m Digital market places

m Mathematics and Computer Science in Berlin
m Cryptography, Category Theory

Thank you PGDay.ch'17

Postgres High Availability Options on Different Layers

m Hardware
m SAN
m Transparent to OS and postgres
m Fails spectacularly
Operating system
m Distributed Replicated Block Device (DRDB)
m SAN in Software
Database physical
m WAL based: Log shipping (> v8.3)
m WAL based: Streaming replication (> v9.0)
Database logical
m PGDay.ch'18: Harald Armin Massa — 11:00
m FOSDEM'18: Magnus Hagander
App-in-db
m Slony-| (trigger based)

Application

https://fosdem.org/2018/schedule/event/postgresql_replication_in_2018/

Introduction: Postgres Write Ahead Log

Before committing any transaction (i.e. set state COMMITTED
in clog), the transaction is written to WAL and flushed to disk

One big virtual file (16 EB)

m Divided into logical files (4 GB)
m Divided into segments (16 MB)

m This is what you see on your disk
m pg-xlog/ 0000000A 0000083E 00000081
—_—

timeline block segment
Divided into pages (8 KB)
Contains xlog records with transaction data
Log Sequence Number (LSN) is a byte address in WAL
SELECT pg_current xlog_location (); 83E/B18FE7CO

m Address 8FE7CO in segment 0000000A0000083E000000B1

Introduction: Postgres Write Ahead Log

m BEGIN; INSERT INTO foo VALUES('bar’); COMMIT;
m Each page has a pg_lsn attribute:
m Contains the LSN of the last xlog record which modified that

page
Load table page Write to WAL~ Commit transaction Write page
1 1 |
pdlsn: Lo| 1 pdlsn: Lg| 1 pdlsn: Lyi|
Buffer Pool (in memory) : 55 : S : [Bar
1 1 |
1 l |
WAL Buffer (in memory) : [har T C] : [Bar T C] :
1 1 |
——————————————————————— [l nl el il
1 [1 |
WAL segments (on disk) : —{ har TC}— : —har TC} :
1 T I ? I A 4
Iy Ly |
Database (on disk) : : : bar
1 l |
l 1 |
1 | |

table foo

Recovery After a Crash Using the Write Ahead Log

Your server just crashed

After a restart:
Uncommitted data?
m It's lost.
m Committed but not yet written to db?

m Start replaying missing records from WAL

m Where to start?
m Form last checkpoint. Location saved in pg_control file
m pg_controldata /your/data/dir

Corrupted page writes?
m full_page_writes = on
m Insert complete backup of pages into WAL
m That makes your WAL so big: ~8K for each modified page

m In short: Write Ahead Log is the D in ACID

Write Ahead Log and Streaming Replication

m Idea: Copy WAL to other postgres servers
m Remote server indefinitely replays from WAL

m Log Shipping: "Just copy WAL segments”
m Streaming Replication: Copy individual xlog records

m Different levels of replication: synchronous_commit

off Everywhere asynchronous

local Locally synchronous, remote asynchronous
on Wait until remote server has written to WAL
remote_apply Wait until remote server has commited

B synchronous_standby_names
m Tradeoff: Saftey vs Performance

m Tunable on transaction level

Postgres Streaming Replication Benefits

m Built-in
m Easy to set up
m Hard to break

m Easy monitoring: All or nothing
m SELECT % FROM pg_stat_replication;

pid 20841

usename repmgr

application_name db02 remote server
backend_xmin 294106915

sent_location 83E/F92947F0
write_location 83E/F92947F0 in memory
flush_location 83E/F92947F0 on disk
replay_location 83E/F92947B8 applied to db
sync_state async

[-]

|
|
|
|
state | streaming OK
|
|
|
|
|

Streaming Replication: Easy Setup

m Prepare primary:
m postgres.conf

listen_addresses '192.168.0.10"°

max_wal_senders > #nodes + 2
wal_level = replica
wal_log_hints = on for pg_rewind

m Special user:
CREATE ROLE repuser WITH REPLICATION
m Dont forget hba.conf and your firewall
m Prepare standby:
pg_basebackup —h primary —P —U repuser —X —R
m postgres.conf:
hot_standby = on

m Adjust recovery .conf
m Done. Ok, it is more complicated but not much

Cluster Management Solutions

At the end of the day: You want an easy failover solution.
m Patroni
m Focuses on automatic failover
m Based on etcd / zookeeper
m RepMgr
m Wraps built-in commands
m Focuses on manual failover
m Automatic failover with repmgrd
m Very slim
m PAF (postgres automatic failover)

m Focuses on automatic failover
m Based on corosync / pacemaker
m Using virtual IPs

Overview: RepMgr (Replication Manager)

https://repmgr.org/ (Source on github)

Developed by 2ndQuadrant, written in C

Packaged for most distributions

m Use 2ndQuadrant repository
m Depending on your postgres version:

dnf install repmgr96 (or repmgrl0, etc)

m Few dependencies to build from source
m Well documented

Only manual failover (i.e. switchover)

Tuneable to automatic failover

Plays well with BarMan (Backup and Recovery Manager)

https://repmgr.org/
https://github.com/2ndQuadrant/repmgr

Setting up RepMgr on Primary

m Start with your primary postgres node
m Create repmgr user (superuser or replication privilege)

createuser —s repmgr

m Create db for metadata
createdb repmgr —O repmgr
m Adjust hba.conf

m Allow repmgr user to connect to its db, local and remotely

m Prepare repmgr.conf

node_id = 1
node_name = db0l1 dont use role names
conninfo = "host=db01.olmero.ch

user=repmgr
dbname=repmgr’

RepMgr Usage: Start a Cluster

m General pattern: repmgr [options] <object> <verb>
object € {primary,standby, node, cluster,witness}
verb € { register , clone, follow, switchover, check, show, . . }
m Register primary node
repmgr primary register

m Installs some extensions
m Adds entry to repmgr database

SELECT x FROM repmgr. nodes

node_id

upstream_node_id

active t

node_name db01

type primary

location default

priority 30

conninfo host=db01.olmero.ch dbname=repmgr user=repmgr
repluser repmgr

slot_name

config_file /etc/repmgr.conf

RepMgr Usage: Adding Nodes to Your Cluster

m Start with empty data directory

m Copy and modify repmgr.conf from primary:

node_id =2
node_name = db02
conninfo = "host=db02.olmero.ch

user=repmgr
dbname=repmgr’

m Clone primary server

repmgr —h db0l.olmero.ch standby clone

m Executes a basebackup
pg_basebackup —h nodel —U repmgr —X stream

m Prepares recovery.conf

RepMgr Usage: Adding Nodes to Your Cluster (cont)

m recovery.conf:

standby_mode = 'on’
recovery_target_timeline = 'latest’
primary_conninfo = 'host = db0l.olmero.ch
user = repmgr
application_name = db02’
restore_.command = '/usr/bin/barman—wal—restore

barman olmero %f %p’

m Start postgres server - Done.

m Streaming replication is running

RepMgr Usage: Change Primary

m View your cluster: (run on any node)

repmgr cluster show

ID| Name | Role | Status | Upstream | Location
1 | db0l | primary | % running | | default
2 | db02 | standby | running | dbO01 | default
3 | db03 | standby | running | db01 | default

m Switch over to other primary: (run on new primary)
repmgr standby switchover

m You want to start with a healthy cluster

m Shutdown primary (service_stop_command)
m Promote local (service_promote_command)
m pg-rewind old primary

m Restart and rejoin old primary

Manual Failover with RepMgr

m Promote a standby:
m Make sure your old primary is dead and will stay dead
m Choose a standby and run

repmgr standby promote

m Calls service_promote_.command from repmgr.conf
m Change the upstream node for your other standbys

repmgr standby follow

m Tell your applications about the new master

m Use a connection pooler to separate your application and
database
m For example: pg_bouncer

m Your old primary is trashed
m Delete and clone from new primary

Automatic Failover with RepMgr: Overview

A repmgrd runs on each postgres node
repmgrd uses metadata table from repmgr db
m It knows your postgres cluster
m But it is not aware of other repmgrds
m The repmgrds are not a cluster themselves (unlike etcd)

repmgrd PQpings the clusters primary and its "local” node
On failure: repmgrd on a standby promote its local node

SR SR

’ postgres i postgres II‘ i postgres ‘
||] |

’ repmgrd }‘ ’ repmgrd ‘ ‘{ repmgrd ‘
db02 db01 db03

Automatic Failover with RepMgr: Configuration

m Shared configuration: /etc/repmgr.conf

failover = automatic

priority = 100

reconnect_attempts = 10

reconnect_interval = 20

promote_command = repmgr standby promote # No

m Lastest LSN overrules priority

m No fencing! Only rudimentary checks are done
m Use a wrapper to do all the logic:

promote_command = /your/fancy/failover/script.py
m STONITH in software

m Eventually call repmgr standby promote
m In doubt, leave it out

BarMan: Backup and Recovery Manager

https://www.pgbarman.org/

Developed by 2ndQuadrant, written in Python 2
Packaged for most distributions

m dnf install barman
m dnf install barman—cli (on your postges nodes)

Physical backups

m Fast recovery
m Point In Time Recovery (PITR)
m No logical backups

Onsite and offsite backups possible

Restore functionality

https://www.pgbarman.org/

BarMan: Overview

Think: "A postgres node without postgres”
Copies your data directory
m pg_basebackup
B rsync
m Uses streaming replication for continuous WAL archiving
B pg_receivexlog

On barmans disk:

/datal/barman/olmero/base:
20180626T013002/ your data dir
20180627T013002/

/datal/barman/olmero/wals:

[..]

0000002E0000084B/ all wal segments
0000002E0000084C/

0000002E0000084D /

0000002E. history

BarMan: Configuration

m Everything in barman.conf

[olmero]
conninfo = host=db0l.olmero.ch user=barman
dbname=postgres
streaming_conninfo = host=db01l.olmero.ch user=barman
backup-method = rsync
ssh_command = ssh postgres@db01l.olmero.ch -c arcfour
reuse_backup = link
parallel_jobs = 4
streaming_archiver = on ; stream wals
slot_name = barman01 . use a replication slot

m Point barman to your postgres primary
m Additionally:

m Passwordless SSH login
m DB connection with replication privilege

BarMan: Commandline Usage

B barman backup olmero
m Basebackup via rsync
m Start pg_receivexlog

B barman list backups olmero

20180627 Wed Jun 27 04:40:39 - Size: 468.3 GiB - WAL Size: 8.5 GiB
20180626 Tue Jun 26 04:58:48 - Size: 468.4 GiB - WAL Size: 9.5 GiB

B barman check olmero ——nagios
BARMAN OK - Ready to serve the Espresso backup for olmero
B barman replication —status show
m Pretty print "SELECT * FROM pg_stat_replication;”

BarMan: How to Restore a Backup

m Restore from backup:

barman recover olmero latest
/data/dir
——remote—ssh—command "ssh._postgres@db01”
<recovery—target>

m Use appropriate recovery target

—target—time "Wed_Jan.01.09:30:00.2018"

—target —xid 128278783

—target —name "foo" # SELECT pg_create_restore_point('foo’)
——target—immediate # only recover base backup

m Restores basebackup via rsync

m Prepares recovery . conf:
®m barman—wal—restore —U barman barman01 olmero %f %p

m Start your postgres server

BarMan and Failover

m Barman has no daemons, no extra processes
m Everything is a cron job

Barman is not aware of your cluster

Check regularly for a new primary
m You have to write a custom script
m Adjust config
m Start streaming from new primary
barman receive-wal —create-slot olmero
barman switch-wal olmero

If your primary changed
m Timeline will change, no confusion in wal segments
m Make a new basebackup

Wrap up - Picture at OLMeRO

m repmgr as wrapper arround built-in features

m Very flexible, very slim
m BYOS: You have to bring your own failover logic
m This is very hard

m Plays well with barman

Application
—————————— pg-bounceir — -~ = -~~~ -
reconfigure DB cluster
1 SR 1SR [
’ postgres [B! postgres 3 | postgres |_
\ /]
I i 1t
{ repmgrd |‘ \ | repmgrd | h ‘{ repmgrd |
\ /
db02 \ db01 / db03
\
v barman01 // logical backup
SR with slot L] -
physical backup

Thank You

Questions and Discussion

